化工进展 ›› 2019, Vol. 38 ›› Issue (01): 505-515.DOI: 10.16085/j.issn.1000-6613.2018-1135
收稿日期:
2018-05-31
修回日期:
2018-09-13
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
于建国
作者简介:
陈英春(1993—),男,博士研究生,研究方向为资源循环科学与工程。E-mail:<email>Y11160219@mail.ecust.edu.cn</email>。|于建国,教授,博士生导师,研究方向为资源与环境化工。E-mail:<email>jgyu@ecust.edu.cn</email>。
基金资助:
Yingchun CHEN(),Jiafen ZHOU,Guimin LU,Jianguo YU()
Received:
2018-05-31
Revised:
2018-09-13
Online:
2019-01-05
Published:
2019-01-05
Contact:
Jianguo YU
摘要:
高纯镁砂是重要的耐高温材料,氧化镁陶瓷则广泛应用于透光材料领域,对两种材料的生产工艺开展研究具有重要理论和实际意义。本文系统地综述了利用菱镁矿、卤水生产高纯氧化镁及镁砂的各种技术,以及氧化镁陶瓷的烧结方法和烧结助剂对烧结过程的影响;介绍了菱镁矿制备高纯镁砂,卤水沉淀法、卤水直接热解法制备高纯氧化镁,以及电熔法制备高纯镁砂等技术。指出了每种生产技术的优缺点及今后的研究与发展方向。介绍了常压烧结、热压烧结、热等静压烧结、放电等离子烧结、微波烧结和真空烧结等氧化镁陶瓷烧结技术及其进展,总结了烧结助剂对烧结过程的影响及其机理,指出氧化镁陶瓷未来的研究关键主要在于对粉体合成技术、致密化烧结技术及烧结助剂的研究。
中图分类号:
陈英春, 周佳芬, 路贵民, 于建国. 高纯镁砂及氧化镁陶瓷研究进展[J]. 化工进展, 2019, 38(01): 505-515.
Yingchun CHEN, Jiafen ZHOU, Guimin LU, Jianguo YU. A review on the production technologies of high-purity magnesia and magnesium oxide ceramics[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 505-515.
1 | 刘弘 . 高纯镁砂的制取方法: CN101475323A[P]. 2009-07-08. |
LIU H . Preparation method of high purity magnesia: CN101475323A[P]. 2009-07-08. | |
2 | 赵磊, 王蒙岩, 林江顺, 等 . 一种利用菱镁矿精矿一步焙烧高纯镁砂的生产线: CN205774134U[P]. 2016-12-07. |
ZHAO L , WANG M Y , LIN J S , et al . Utilize production line of one step of high-purity magnesia of calcination in magnesite concentrate: CN205774134U[P]. 2016-12-07. | |
3 | 徐徽, 蔡勇, 陈白珍, 等 . 用低品位菱镁矿制取高纯镁砂[J]. 中南大学学报(自然科学版), 2006, 37(4): 698-702. |
XU H , CAI Y , CHEN B Z , et al . Preparation of high purity magnesia from low-grade magnesite[J]. Journal of Central South University(Science and Technology), 2006, 37(4): 698-702. | |
4 | RANJITHAM A M , KHANGAONKAR P R . Leaching behaviour of calcined magnesite with ammonium chloride solutions[J]. Hydrometallurgy, 1990, 23(2): 177-189. |
5 | 章柯宁, 张一敏, 王昌安, 等 . 从低品级菱镁矿中提取高纯氧化镁的研究[J]. 武汉科技大学学报(自然科学版), 2006, 29(6): 558-560. |
ZHANG K N , ZHANG Y M , WANG C A , et al . Obtaining high-grade mgo from low-grade magnesite[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2006, 29(6): 558-560. | |
6 | 章柯宁, 张一敏, 王昌安, 等 . 碳化法从菱镁矿中提取高纯氧化镁的研究[J]. 武汉科技大学学报(自然科学版), 2004, 27(4): 352-353. |
ZHANG K N , ZHANG Y M , WANG C A , et al . Soaking high-grade MgO from magnesite by carbonate method[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), , 2004, 27(4): 352-353. | |
7 | 马鹏程 . 高活性氧化镁和高密度烧结镁砂的研究[D]. 沈阳: 东北大学, 2014. |
MA P C . Study on high-activity and high-density MgO[D]. Shenyang: Northeastern University, 2014. | |
8 | 王云山, 杨刚, 杨平 . 高纯镁砂湿火一体法装置及制备高纯镁砂的方法: CN104108733B[P]. 2015-12-09. |
WANG Y S , YANG G , YANG P . High-purity magnesia wet-pyrogenic integrated device and method for preparing high-purity magnesia: CN104108733B[P]. 2015-12-09. | |
9 | 谢垚 . 用六水氯化镁制备高纯镁砂工艺[D]. 太原: 太原理工大学, 2014. |
XIE Y . Research on preparation of high purity magnesite with MgCl2·6H2O[D]. Taiyuan: Taiyuan University of Technology, 2014. | |
10 | 李陇岗 . 青海盐湖水氯镁石制备高纯镁砂研究[D]. 成都: 成都理工大学, 2005. |
LI L G . Studies on preparation of high purity magnesia from bischofite in Qinghai salt lakes[D]. Chengdu: Chengdu University of Technology, 2005. | |
11 | 黄琼珠 . 废弃水氯镁石热解制备高纯镁砂研究[D]. 上海: 华东理工大学, 2013. |
HUANG Q Z . Preparation of high purity magnesia from waste bischofite by pyrolysis[D]. Shanghai: East China University of Science and Technology, 2013. | |
12 | EPSTEIN J A . Utilization of the dead sea minerals (a review)[J]. Hydrometallurgy, 1976, 2(1): 1-10. |
13 | 郭如新 . 合成法氧化镁、氢氧化镁生产现状与前景展望[J]. 无机盐工业, 2011, 43(11): 1-5,18. |
GUO R X . Present production status and developing prospect of MgO and Mg(OH)2 by synthetic processes[J]. Inorganic Chemicals Industry, 2011, 43(11): 1-5,18. | |
14 | AMAN J J . Improvements in or relating to the thermal decomposition of certain chlorides and sulphates: GB793700A[P]. 1958-04-23. |
15 | 路贵民, 黄琼珠, 于建国, 等 . 一种用水氯镁石热解制备碱式氯化镁和氧化镁的方法: CN101624198A[P]. 2010-01-13. |
LU G M , HUANG Q Z , YU J G , et al . Method for preparing basic magnesium chloride and magnesium oxide by pyrolyzing bischofite: CN101624198A[P]. 2010-01-13. | |
16 | 刘源滔 . 水氯镁石热解机理与中间产物结构演变[D]. 上海: 华东理工大学, 2017. |
LIU Y T . Study on the mechanism and structure transition of thermal decomposition of MgCl2∙6H2O[D]. Shanghai: East China University of Science and Technology, 2017. | |
17 | 刘富舟 . 水氯镁石喷雾热解制备氧化镁工艺设计及实验研究[D]. 上海: 华东理工大学, 2015. |
LIU F Z . Process design and experimental study on preparation of magnesium oxide from bischofite by spray pyrolysis[D]. Shanghai: East China University of Science and Technology, 2015. | |
18 | DU W , SUN Z , LU G M , et al . The two-phase high-speed stream at the centerline of a hollow-cone spray produced by a pressure-swirl nozzle[J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 359-367. |
19 | DU W , SUN Z , LU G M , et al . Interaction between a hollow-cone spray and the co-axial swirling stratified flow in a novel spray pyrolysis furnace[J]. The Canadian Journal of Chemical Engineering, 2018, 96(5): 1079-1088. |
20 | DU W , SUN Z , LU G M , et al . CFD aided design of integrated spray pyrolysis furnace for liquid ore exploitation[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 245-257. |
21 | 陈侠, 陈丽芳 . 用六水氯化镁工业化生产高纯氧化镁的新工艺[J]. 盐业与化工, 2008, 37(3): 13-16. |
CHEN X , CHEN L F . New process for industrial production of high-purity magnesium oxide from magnesium chloride hexahydrate[J]. Journal of Salt Science and Chemical Industry, 2008, 37(3): 13-16. | |
22 | 闫岩, 卢旭晨, 王体壮, 等 . 利用老卤生产高纯氧化镁技术研究进展[J]. 化工进展, 2016, 35(10): 3251-3257. |
YAN Y , LU X C , WANG T Z , et al . A review on the technologies of high-purity magnesia production from brine[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3251-3257. | |
23 | LU X C , YAN Y . Method and device for producing high-purity magnesium oxide and co-producing industrial concentrated hydrochloric acid through partially hydrated magnesium chloride fluidization pyrolysis: CN105197968A[P]. 2015-12-30. |
24 | HUANG Q Z , LU G M , WANG J , et al . Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 159-164. |
25 | HUANG Q Z , LU G M , WANG J , et al . Mechanism and kinetics of thermal decomposition of MgCl2·6H2O[J]. Metallurgical and Materials Transactions B, 2010, 41(5): 1059-1066. |
26 | PUN D , ALI S . Unsupervised clustering for electrofused magnesium oxide sorting[C]//2009 IEEE International Conference on Industrial Engineering and Engineering Management. 2009: 698-702. |
27 | 谢祥 . 盐湖卤水热解氧化镁制备高纯电熔镁砂的研究[D]. 上海: 华东理工大学, 2015. |
XIE X . Study on the high purity electro-fused magnesia produced by salt lake brine[D]. Shanghai: East China University of Science and Technology, 2015. | |
28 | 路贵民, 谢祥, 杜玮, 等 . 一种生产大结晶电熔镁砂的添加剂: CN103864119A[P]. 2014-06-18. |
LU G M , XIE X , DU W , et al . Additive for producing macrocrystalline fused magnesite: CN103864119A[P]. 2014-06-18. | |
29 | 仝永娟 . 电熔镁系统节能新工艺研究[D]. 沈阳: 东北大学, 2010. |
TONG Y J . Study on advanced technology of fused magnesia process based on system's energy conservation theory[D]. Shenyang: Northeastern University, 2010. | |
30 | WANG Z , WANG N H . Numerical simulation of melt convection in an AC electro-fused magnesia furnace for MgO production[J]. IET Electr. Power Appl., 2018, 12(5): 701-707. |
31 | MA W L, ZHU S X . Intelligent control algorithm of electric-fused magnesia furnace based on neural network[C] |
//XING Song, CHEN Suting , WEI Zhanming , et al . Unifying Electrical Engineering and Electronics Engineering. Proceedings of the 2012 International Conference on Electrical and Electronics Engineering. New York: Springer, 2014: 1877-1886. | |
32 |
FANG Z , YANG J , TAO S F , et al . A real-time embedded control system for electro-fused magnesia furnace[J]. J. Control. Sci. Eng., 2013, 2013: 12. DOI: 10.1155/2013/719683.
DOI URL |
33 | 吉亚明, 蒋丹宇, 冯涛, 等 . 透明陶瓷材料现状与发展[J]. 无机材料学报, 2004, 19(2): 275-282. |
JI Y M , JIANG D Y , FENG T , et al . Fabrication and developments of transparent ceramics[J]. Journal of Inorganic Materials, 2004, 19(2): 275-282. | |
34 | CHEN D Y , JORDAN E H , GELL M . Pressureless sintering of translucent MgO ceramics[J]. Scripta Materialia, 2008, 59(7): 757-759. |
35 | EHRE D , GUTMANAS E Y , CHAIM R . Densification of nanocrystalline MgO ceramics by hot-pressing[J]. Journal of the European Ceramic Society, 2005, 25(16): 3579-3585. |
36 | ITATANI K , TSUJIMOTO T , KISHIMOTO A . Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing[J]. Journal of the European Ceramic Society, 2006, 26(4): 639-645. |
37 | CHAIM R , SHEN Z J , NYGREN M . Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering[J]. Journal of Materials Research, 2004, 19(9): 2527-2531. |
38 | SUN H B , ZHANG Y J , GONG H Y , et al . Microwave sintering and kinetic analysis of Y2O3-MgO composites[J]. Ceram Int., 2014, 40(7): 10211-10215. |
39 | MISAWA T , MORIYOSHI Y , Y Y . Effect of silica and boron oxide on transparency of magnesia ceramics[J]. Journal of the Ceramic Society of Japan, 1999, 107(1244): 343-348. |
40 | 周佳芬 . 透光氧化镁陶瓷制备工艺及性能研究[D]. 上海: 华东理工大学, 2018. |
ZHOU J F . Study on the preparation and properties of translucent mgo ceramics[D]. Shanghai: East China University of Science and Technology, 2018. | |
41 | LAYDEN G K , MCQUARRIE M C . Effect of minor additions on sintering of MgO[J].AmJ.Ceram. Soc., 1959, 42(2): 89-92. |
42 | RICE R W . Hot-pressing of MgO with NaF[J]. Journal of the American Ceramic Society, 1971, 54(4): 205-207. |
43 | RHODES W , SELLERS D , VASILOS T . Development and evaluation of transparent magnesium oxide[R]. Watertown, Massachusetts: U. S. Army Materials Research Agency, 1967. |
44 | BENECKE M W , OLSON N E , PASK J A . Effect of LiF on hot-pressing of MgO[J].AmJ.Ceram. Soc., 1967, 50(7): 365-368. |
45 | FANG Y , AGRAWAL D , SKANDAN G , et al . Fabrication of translucent MgO ceramics using nanopowders[J]. Materials Letters, 2004, 58(5): 551-554. |
46 | KAN A , MORIYAMA T , TAKAHASHI S , et al . Low-temperature sintering and microwave dielectric properties of MgO ceramic with LiF addition[J]. Japanese Journal of Applied Physics, 2011, 50(9): 1489-1496. |
47 | KÖBEL S , SCHNEIDER D , SCHÜLER C C , et al . Sintering of vanadium-doped magnesium oxide[J]. Journal of the European Ceramic Society, 2004, 24(8): 2267-2274. |
48 | LEE Y B , PARK H C , OH K D , et al . Sintering and microstructure development in the system MgO-TiO2 [J]. Journal of Materials Science, 1998, 33(17): 4321-4325. |
49 | HAN B Q , LI Y S , GUO C C , et al . Sintering of MgO-based refractories with added WO3 [J]. Ceram. Int., 2007, 33(8): 1563-1567. |
50 | PENG C , LI N , HAN B . Effect of zircon on sintering, composition and microstructure of magnesia powders[J]. Science of Sintering, 2009, 41(1): 11-17. |
51 | 于忞, 罗旭东, 张国栋, 等 . TiO2对氧化镁陶瓷烧结性能及抗热震性能的影响[C]//第十九届全国高技术陶瓷学术年会. 2016: 52-53. |
YU M , LUO X D , ZHANG G D , et al . Effect of TiO2 on sintering and thermal shock resistance of MgO ceramic[C]// The Nineteenth National Academic Annual Meeting of High Tech Ceramics. 2016: 52-53. | |
52 | YU M , LUO X D , ZHANG G D , et al . Effect of Al2O3 on sintering and thermal shock resistance of MgO ceramic[J]. Journal of Synthetic Crystals, 2017, 46(3): 507-513. |
53 | YU M , LUO X D , ZHANG G D , et al . Effect of La2O3 on sintering properties and thermal shock properties of MgO ceramic[J]. Journal of Synthetic Crystals, 2016, 45(9): 2251-2256. |
54 | 彭子钧, 罗旭东, 于忞, 等 . Al2O3和TiO2添加量对共沉淀法制备MgO基陶瓷性能的影响[J]. 机械工程材料, 2018, 42(4): 35-39. |
PENG Z J , LUO X D , YU M , et al . Effect of Al2O3 and TiO2 addition amount on properties of MgO-based ceramics by coprecipitation method[J]. Materials for Mechanical Engineering, 2018, 42(4): 35-39. | |
55 | KARPINOS D M , GROSHEVA V M , MOROZOVA V N , et al . Some properties of magnesium oxide ceramic reinforced with filamentary crystals of zirconium dioxide[J]. Refractories, 1978, 19(11/12): 782-786. |
56 | 饶东生, 林彬荫, 朱伯铨 . 降低高纯氧化镁烧结温度的研究[J]. 硅酸盐学报, 1989, 17(1): 75-81. |
RAO D S , LIN B Y , ZHU B Q . Study on decreasing sintering temperature of high purity magnesite[J]. Journal of the Chinese Ceramic Society, 1989, 17(1): 75-81. | |
57 | 徐智清, 卓育华 . 影响氧化镁陶瓷芯性能的几个因素[J]. 铸造, 1996(10): 11-14. |
XU Z Q , ZHUO Y H . Factors influencing properties of magnesia ceramic core[J]. Foundry, 1996(10): 11-14. |
[1] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[2] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[3] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[4] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[5] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[6] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[7] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[8] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[9] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
[10] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[11] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[12] | 赵佳琪, 黄亚继, 李志远, 丁雪宇, 祁帅杰, 张煜尧, 刘俊, 高嘉炜. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
[13] | 潘宇涵, 徐俊, 赵光杰, 林诚乾, 金亮, 薛志亮, 周永刚, 黄群星. 废轮胎梯级热解中试装置开发与产物特性分析[J]. 化工进展, 2023, 42(3): 1240-1247. |
[14] | 何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280. |
[15] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |