[1] LI W, SONG G L, TANG G Y, et al. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell[J]. Energy, 2011, 36(2):785-791.
[2] GIRO-PALOMA J, KONUKLU Y, FERNANDEZ A I. Preparation and exhaustive characterization of palmitic acid microcapsules as novel phase change material[J]. Solar Energy, 2015, 112:300-309.
[3] XU B, LI P W, CHAN C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants:a review to recent developments[J]. Applied Energy, 2015, 160:286-307.
[4] WANG X L, DENNIS M. An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications[J]. Chemical Engineering Science, 2015, 137:938-946.
[5] KENISARIN M, MAHKAMOV K. Passive thermal control in residential buildings using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2016, 55:371-398.
[6] FU X W, LIU Z M, WU B, et al. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123:1173-1181.
[7] SUN Z M, ZHANG Y Z, ZHENG S L, et al. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials[J]. Thermochimica Acta, 2013, 558:16-21.
[8] SAHAN N, PAKSOY H O. Thermal enhancement of paraffin as a phase change material with nanomagnetite[J]. Solar Energy Materials and Solar Cells, 2014, 126:56-61.
[9] LI M. A nano-graphite/paraffin phase change material with high thermal conductivity[J]. Applied Energy, 2013, 106:25-30.
[10] SAHAN N, FOIS M, PAKSOY H. The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material[J]. International Journal of Energy Research, 2016, 40:198-206.
[11] COLLA L, FEDELE L, MANCIN S, et al. Nano-PCMs for enhanced energy storage and passive cooling applications[J]. Applied Thermal Engineering, 2017, 110:584-589.
[12] 康亚盟, 刁彦华, 赵耀华, 等. 纳米复合相变蓄热材料的制备与特性[J]. 化工学报, 2016, 67(s1):372-378. KANG Y M, DIAO Y H, ZHAO Y H, et al. Preparation and properties of nano composite phase change thermal storage materials[J]. CIESC Journal, 2016, 67(s1):372-378.
[13] 吴淑英, 童旋, 龚曙光, 等. 纳米石墨烯片/石蜡复合相变蓄热材料的热性质研究[J]. 化工新型材料, 2014, 42(7):105-107. WU S Y, TONG X, GONG S G, et al. Thermal property of nano-GnPs/paraffin heat storage phase change composite material[J]. New Chemical Materials, 2014, 42(7):105-107.
[14] MOTAHAR S, NIKKAM N, ALEMRAJABI A A, et al. A novel phase change material containing mesoporous silica nanoparticles for thermal storage:a study on thermal conductivity and viscosity[J]. International Communications in Heat and Mass Transfer, 2014, 56:114-120.
[15] ZHANG S, WU J Y, TSE C T, et al. Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling[J]. Solar Energy Materials and Solar Cells, 2012, 96:124-130.
[16] JI P J, SUN H H, ZHONG Y X, et al. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes[J]. Chemical Engineering Science, 2012, 81:140-145.
[17] CHOI D H, LEE J, HONG H, et al. Thermal conductivity and heat transfer performance enhancement of phase change materials(PCM) containing carbon additives for heat storage application[J]. International Journal of Refrigeration, 2014, 42:112-120.
[18] YUAN Y P, ZHANG N, LI T Y, et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage:a comparative study[J]. Energy, 2016, 97:488-497.
[19] HARIKRISHNAN S, KALAISELVAM S. Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material[J]. Thermochimica Acta, 2012, 533:46-55.
[20] ZENG J L, ZHU F R, YU S B, et al. Effects of copper nanowires on the properties of an organic phase change material[J]. Solar Energy Materials and Solar Cells, 2012, 105:174-178.
[21] ZENG J L, CAO Z, YANG D W, et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101:385-389.
[22] ZENG J L, SUN L X, XU F, et al. Study of a PCM based energy storage system containing Ag nanoparticles[J]. Journal of Thermal Analysis and Calorimetry, 2007, 87(2):369-373.
[23] 华维三, 章学来, 罗孝学, 等. 纳米金属/石蜡复合相变蓄热材料的实验研究[J]. 太阳能学报, 2017, 38(6):1723-1728. HUA W S, ZHANG X L, LUO X X, et al. Experimental study of nanometal-paraffin composite phase change heat storage material[J]. Acta Energiae Solaris Sinica, 2017, 38(6):1723-1728.
[24] NOURANI M, HAMDAMI N, KERAMAT J, et al. Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity[J]. Renewable Energy, 2016, 88:474-482.
[25] YANG Y Y, LUO J, SONG G L, et al. The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials[J]. Thermochimica Acta, 2014, 597:101-106.
[26] KARUNAMURTHY K, MURUGUMOHANKUMAR K, SURESH S. Use of CuO nano-material for the improvement of thermal conductivity and performance of low temperature energy storage system of solar pond[J]. Digest Journal of Nanomaterials and Biostructures, 2012, 7(4):1833-1841.
[27] LI T X, LEE J H, WANG R Z, et al. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J]. International Journal of Heat and Mass Transfer, 2014, 75:1-11.
[28] WANG J F, XIE H Q, ZHONG X, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84:339-344.
[29] ZHANG N, YUAN Y P, YUAN Y G, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage[J]. Solar Energy, 2014, 110:64-70.
[30] YAVARI F, FARD H R, PASHAYI K, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives[J]. The Journal of Physical Chemistry C, 2011, 115:8753-8758.
[31] ZHANG X G, WEN R L, HUANG Z H, et al. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials[J]. Energy and Buildings, 2017, 149:463-470.
[32] KONUKLU Y, ERSOY O, GOKCE O. Easy and industrially applicable impregnation process for preparation of diatomite-based phase change material nanocomposites for thermal energy storage[J]. Applied Thermal Engineering, 2015, 91:759-766.
[33] LI M, GUO Q G, NUTT S. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage[J]. Solar Energy, 2017, 146:1-7.
[34] GUAN W M, LI J H, QIAN T T, et al. Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers[J]. Chemical Engineering Journal, 2015, 277:56-63.
[35] 喻树娟, 谭淑娟, 徐国跃, 等. 石蜡/SiO2气凝胶复合相变材料的制备及性能表征[J]. 兵器材料科学与工程, 2014, 37(1):27-30. YU S J, TAN S J, XU G Y, et al. Preparation and characterization of paraffin/silicon dioxide aerogel composite phase change material[J]. Ordnance Material Science and Engineering, 2014, 37(1):27-30.
[36] 罗李娟, 张凯, 杨文彬, 等. 形貌对石蜡/石墨烯气凝胶定形相变材料性能的影响[J]. 高分子材料科学与工程, 2017, 33(5):93-96. LUO L J, ZHANG K, YANG W B, et al. Effect of morphology on the properties of paraffin/graphene aerogel shape-stable phase change materials[J]. Polymer Material Science and Engineering, 2017, 33(5):93-96.
[37] 郭艳芹, 占会云, 张正国, 等. 十八烷/膨润土复合相变储热材料的制备及性能研究[J]. 材料导报, 2010, 24:341-343. GUO Y Q, ZHAN H Y, ZHANG Z G, et al. Preparation and performance research on octadecane/bentonite composite phase change thermal energy storage material[J]. Materials Review, 2010, 24:341-343.
[38] NOMURA T, ZHU C Y, SHENG N, et al. Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2[J]. Solar Energy Materials and Solar Cells, 2015, 143:424-429.
[39] ZHONG Y J, ZHOU M, HUANG F Q, et al. Effect of graphene aerogel on thermal behavior of phase change materials for thermal management[J]. Solar Energy Materials and Solar Cells, 2013, 113:195-200.
[40] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material[J]. Applied Thermal Engineering, 2013, 61:633-640.
[41] LIU J S, YU Y Y, HE X. Research on the preparation and properties of lauric acid/expanded perlite phase change materials[J]. Energy and Buildings, 2016, 110:108-111.
[42] MENG X, ZHANG H Z, SUN L X, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111:377-384.
[43] XIONG W L, CHEN Y, HAO M, et al. Facile synthesis of PEG based shape-stabilized phase change materials and their photo-thermal energy conversion[J]. Applied Thermal Engineering, 2015, 91:630-637.
[44] FENG L L, WANG C Y, SONG P, et al. The form-stable phase change materials based on polyethylene glycol and functionalized carbon nanotubes for heat storage[J]. Applied Thermal Engineering, 2015, 90:952-956.
[45] QIAN T T, LI J H, MA H W, et al. Adjustable thermal property of polyethylene glycol/diatomite shape-stabilized composite phase change material[J]. Polymer Composites, 2016, 37(3):854-860.
[46] FU Y, XIONG W L, WANG J Y, et al. Polyethylene glycol based graphene aerogel confined phase change materials with high thermal stability[J]. Journal of Nanoscience and Nanotechnology, 2018, 18:3341-3347.
[47] ZHANG J S, ZHANG X, WAN Y Z, et al. Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material[J]. Solar Energy, 2012, 86:1142-1148.
[48] ZHANG Y A, WANG L J, TANG B T, et al. Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure[J]. Applied Energy, 2016, 184:241-246.
[49] SARI A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Conversion and Management, 2016, 117:132-141.
[50] ZHANG X G, YIN Z Y, MENG D Z, et al. Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite[J]. Renewable Energy, 2017, 112:113-123.
[51] MEI D D, ZHANG B, LIU R C, et al. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95:2772-2777.
[52] ZHANG X G, HUANG Z H, MA B, et al. Polyethylene glycol/Cu/SiO2 form stable composite phase change materials:preparation, characterization, and thermal conductivity enhancement[J]. Royal Society of Chemistry, 2016, 6:58740-58748.
[53] ZENG J L, GAN J, ZHU F R, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 127:122-128. |