[1] 刘志伟,张晨.微藻培养的光生物反应器[J].现代化工, 2000, 20(12):56-58. LIU Z W, ZHANG C. Photobioreactors for cultivating microalgae[J]. Modern Chemical Industry, 2000, 20(12):56-58.
[2] RONCALLO O P,FREITES S G,CASTILLO E P,et al.Comparison of two different vertical column photobioreactors for the cultivation of nannochloropsis sp.[J]. Journal of Energy Resources Technology, 2013, 135(1):1-7.
[3] RITCHAROEN W, SRIOUAM P, NAKSEEDEE P, et al. Cultivation options for indoor and outdoor growth of Chaetoceros gracilis with airlift photobioreactors[J]. Maejo International Journal of Science and Technology, 2014, 8(1):100-113.
[4] 杨泽熵,李鑫,王英娟.一种培养产油微藻的新型气升式光生物反应器设计[J].西北大学学报(自然科学版), 2013, 43(4):585-589. YANG Z S, LI X, WANG Y J. Design of a new type airlift photobioreactor for oleaginous microalgae culture[J]. Journal of Northwest University(Natural Science Edition), 2013, 43(4):585-589.
[5] 李永富.内置LED光源的新型平板式光生物反应器用于微藻高效固定CO2[D].青岛:中国海洋大学, 2014. LI Y F. A new type of flat-plate photobioreactor equipped with interior LED illuminant for decarburized microalgae cultivation[D]. Qingdao:Ocean University of China, 2014.
[6] HINCAPIE E, STUART B J. Design, construction, and validation of an internally lit air-lift photobioreactor for growing algae[D]. Ohio:the Russ College of Engineering and Technology, Ohio University, 2010.
[7] 周集体,桂冰,李昂,等.气升式光生物反应器中Chlorella sp.优化培养与能量计算[J]. 哈尔滨工业大学学报, 2015, 47(6):94-98. ZHOU J T, GUI B, LI A, et al. Optimization of Chlorella sp. cultivation in airlift photobioreactor and energy calculation[J]. Journal of Harbin Institute of Technology, 2015, 47(6):94-98.
[8] 谢水英,王科,韩承江.内置LED光源罐式全自动光生物反应器设计及性能分析[J].现代化工, 2016, 36(1):147-151. XIE S Y, WANG K, HAN C J. Design and performance analysis of cylindrical photo-bioreactors with built-in light emitting diodes (LED) in microalga culture[J]. Modern Chemical Industry, 2016, 36(1):147-151.
[9] HU J Y, SATO T. A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement[J]. Energy Conversion and Management, 2017, 133:558-565.
[10] HEINING M, SUTOR A, STUTE S C, et al. Internal illumination of photobioreactors via wireless light emitters:a proof of concept[J]. Journal of Applied Phycology, 2015, 27(1):59-66.
[11] GLEMSER M, HEINING M, SCHMIDT J, et al. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae:current state and perspectives[J]. Applied Microbiology and Biotechnology, 2016, 100(3):1077-1088.
[12] CHOI B, LIM J H, LEE J, et al. Optimum conditions for cultivation of Chlorella sp. FC-21 using light emitting diodes[J]. Korean Journal of Chemical Engineering, 2013, 30(8):1614-1619.
[13] 孙中亮.低浓度二氧化碳培养微藻的吸收强化和烟道气组分调变[D].北京:中国科学院研究生院过程工程研究所, 2015. SUN Z L. Absorption enhancement of low-concentration CO2 in the production of microalgae and modification of flue gas[D]. Beijing:University of Chinese Academy of Sciences, 2015.
[14] 杜奎, 梁芳, 耿亚洪, 等. 利用烟道气培养微藻的机制与应用[J]. 生物技术通报, 2015, 31(2):1-9. DU K, LIANG F, GENG Y H, et al. Cultivation of microalgae with flue gas:mechanism and application[J]. Biotechnology Bulletin, 2015, 31(2):1-9.
[15] CHENG Y, ZHANG L, LUO X Z, et al. Effects of various LED light wavelengths and intensities on the performance of purifying synthetic domestic sewage by microalgae at different influent C/N ratios[J]. Ecological Engineering, 2013, 51:24-32.
[16] 魏萱.微藻在不同波长光谱下生长规律及水热液化制备生物质油的优化工艺研究[D].杭州:浙江大学, 2014. WEI X. Research on the rule of microalgal growth under the different spectral wavelengths and the optimization of the technology for bio-oil production based on hydrothermal liquefaction of microalgae[D]. Hangzhou:Zhejiang University, 2014.
[17] PATIDAR S K, MITRA M, GOEL S, et al. Effect of carbon supply mode on biomass and lipid in CSMCRI's Chlorella variabilis (ATCC 12198)[J].Biomass and Bioenergy, 2016, 86:1-10.
[18] SOBCZUK T M, CAMACHO F G, RUBIO F C, et al. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors[J]. Biotechnology and Bioengineering, 2000, 67(4):465-475.
[19] 郭欣,孙德宇,李建隆,等.平板气升环流式光生物反应器中气泡特性的图像法分析[J].计算机与应用化学. 2014, 31(6):663-668. GUO X, SUN D Y, LI J L, et al. Analysis of bubble characteristics in rectangular airlift loop reactor using digital image technology[J]. Computers and Applied Chemistry, 2014, 31(6):663-668.
[20] 欧阳峥嵘,温小斌,耿亚红,等.光照强度,温度, pH,盐度对小球藻(Chlorella)光合作用的影响[J].植物科学学报, 2010, 28(1):49-55. OUYANG Z R, WEN X B, GENG Y H, et al. The effects of light intensities, temperatures, pH and salinities on photosynthesis of Chlorella[J].Journal of Wuhan Botanical Research,2010,28(1):49-55.
[21] 张正洁,汪苹.自养小球藻培养条件的优化[J].北京工商大学学报(自然科学版), 2011, 29(1):54-58. ZHANG Z J, WANG P. Optimization of culture conditions of Chlorella. sp[J]. Journal of Beijing Technology and Business University(Natural Science Edition), 2011, 29(1):54-58.
[22] FRUMENTO D, CASAZZA A A, ARNI S A, et al. Cultivation of Chlorella vulgaris in tubular photobioreactors:a lipid source for biodiesel production[J]. Biochemical Engineering Journal, 2013, 81:120-125.
[23] 张楠,陈蓉,王永忠,等.光照条件对跑道池光生物反应器内蛋白核小球藻生长特性的影响[J].环境工程学报, 2015, 3:1496-1500. ZHANG N, CHEN R, WANG Y Z, et al. Effect of light conditions on growth of Chlorella pyrenoidosa in an open raceway photobioreactor[J]. Chinese Journal of Environmental Engineering, 2015, 3:1496-1500.
[24] MUNKEL R, SCHMID-STAIGER U, WERNER A, et al. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris[J]. Biotechnology and Bioengineering, 2013, 110(11):2882-2893. |