化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5830-5842.DOI: 10.16085/j.issn.1000-6613.2022-0089
常甜1,2,3,4(), 王宇1, 赵作桐1, 胡锦超1, 沈振兴2()
收稿日期:
2022-01-12
修回日期:
2022-05-20
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
沈振兴
作者简介:
常甜(1988—),女,副教授,硕士生导师,研究方向为大气挥发性有机物监测与控制。E-mail:changtian@sust.edu.cn。
基金资助:
CHANG Tian1,2,3,4(), WANG Yu1, ZHAO Zuotong1, HU Jinchao1, SHEN Zhenxing2()
Received:
2022-01-12
Revised:
2022-05-20
Online:
2022-11-25
Published:
2022-11-28
Contact:
SHEN Zhenxing
摘要:
三氯乙烯(TCE)是用途广泛的工业原料,其排放严重威胁着生态环境和人体健康。如何高效去除TCE成为亟待解决的关键问题。本文采用沉积-沉淀法制备了一系列不同Ce/Mn摩尔比的Mn-Ce/HZSM-5催化剂,用于催化去除TCE,并用响应面分析的方法探究不同因素对TCE催化氧化过程的影响。结果表明:Mn-Ce/HZSM-5催化剂对TCE有较好的催化活性,当Ce/Mn摩尔比为0.8时催化活性最高,主要归因于该催化剂较高的还原性和丰富的表面氧物种。另外,响应面分析结果表明:在MnCe0.8/HZSM-5催化氧化TCE过程中,温度是影响TCE去除率和CO2选择性的最关键因素,其次是流量和相对湿度(RH)。当气体流量为0.2L/min、温度为450℃、RH为16%时,最优TCE去除率为77.1%,CO2选择性为70.0%,且MnCe0.8/HZSM-5催化剂表现出较好的稳定性。研究结果为含氯挥发性有机物的去除提供了一种有效方法。
中图分类号:
常甜, 王宇, 赵作桐, 胡锦超, 沈振兴. 响应面法优化Mn-Ce/HZSM-5催化氧化三氯乙烯[J]. 化工进展, 2022, 41(11): 5830-5842.
CHANG Tian, WANG Yu, ZHAO Zuotong, HU Jinchao, SHEN Zhenxing. Optimization of catalytic oxidation of trichloroethylene over Mn-Ce/HZSM-5 using response surface methodology[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5830-5842.
自变量 | 因素 | 水平 | ||||
---|---|---|---|---|---|---|
-2 | -1 | 0 | 1 | 2 | ||
X1 | 温度/℃ | 350 | 375 | 400 | 425 | 450 |
X2 | 气体流量/L·min-1 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
X3 | RH/% | 0 | 10 | 20 | 30 | 40 |
表1 CCD分析的自变量和水平
自变量 | 因素 | 水平 | ||||
---|---|---|---|---|---|---|
-2 | -1 | 0 | 1 | 2 | ||
X1 | 温度/℃ | 350 | 375 | 400 | 425 | 450 |
X2 | 气体流量/L·min-1 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
X3 | RH/% | 0 | 10 | 20 | 30 | 40 |
催化剂 | 原子比Ce/Mn① | BET/m2·g-1 | 总孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|---|
HZSM-5 | — | 410.40 | 0.20 | 2.05 |
MnO x /HZSM-5 | — | 252.50 | 0.26 | 4.20 |
MnCe0.4O x /HZSM-5 | 0.39 | 237.56 | 0.25 | 3.38 |
MnCe0.8O x /HZSM-5 | 0.81 | 232.50 | 0.23 | 3.34 |
MnCe1.2O x /HZSM-5 | 1.18 | 211.66 | 0.19 | 3.24 |
CeO2/HZSM-5 | — | 243.72 | 0.23 | 3.36 |
表2 Mn-Ce/HZSM-5的理化性质
催化剂 | 原子比Ce/Mn① | BET/m2·g-1 | 总孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|---|
HZSM-5 | — | 410.40 | 0.20 | 2.05 |
MnO x /HZSM-5 | — | 252.50 | 0.26 | 4.20 |
MnCe0.4O x /HZSM-5 | 0.39 | 237.56 | 0.25 | 3.38 |
MnCe0.8O x /HZSM-5 | 0.81 | 232.50 | 0.23 | 3.34 |
MnCe1.2O x /HZSM-5 | 1.18 | 211.66 | 0.19 | 3.24 |
CeO2/HZSM-5 | — | 243.72 | 0.23 | 3.36 |
催化剂 | Mn4+/Mn | Mn3+/Mn | Ce3+/Ce4+ | Oa/Ol |
---|---|---|---|---|
Mn/HZSM-5 | 0.24 | 0.48 | — | 3.4 |
MnCe0.4/HZSM-5 | 0.18 | 0.44 | 0.16 | 3.43 |
MnCe0.8/HZSM-5 | 0.20 | 0.51 | 0.21 | 3.78 |
MnCe1.2/HZSM-5 | 0.17 | 0.43 | 0.12 | 2.86 |
Ce/HZSM-5 | — | — | 0.11 | 3.37 |
表3 Mn-Ce/HZSM-5的XPS结果
催化剂 | Mn4+/Mn | Mn3+/Mn | Ce3+/Ce4+ | Oa/Ol |
---|---|---|---|---|
Mn/HZSM-5 | 0.24 | 0.48 | — | 3.4 |
MnCe0.4/HZSM-5 | 0.18 | 0.44 | 0.16 | 3.43 |
MnCe0.8/HZSM-5 | 0.20 | 0.51 | 0.21 | 3.78 |
MnCe1.2/HZSM-5 | 0.17 | 0.43 | 0.12 | 2.86 |
Ce/HZSM-5 | — | — | 0.11 | 3.37 |
试验 | 自变量(X) | 响应值(Y) | |||
---|---|---|---|---|---|
温度(X1)/°C | 气体流量(X2)/L·min-1 | RH(X3)/% | TCE去除率(Y1)/% | CO2选择性(Y2)/% | |
1 | 425 | 0.8 | 10 | 56.76 | 47.39 |
2 | 400 | 0.6 | 0 | 43.13 | 31.69 |
3 | 400 | 0.2 | 20 | 55.27 | 48.19 |
4 | 425 | 0.4 | 10 | 61.84 | 52.87 |
5 | 375 | 0.4 | 10 | 40.37 | 33.92 |
6 | 425 | 0.4 | 30 | 57.61 | 49.42 |
7 | 400 | 0.6 | 20 | 48.68 | 40.68 |
8 | 350 | 0.6 | 20 | 27.61 | 24.29 |
9 | 400 | 0.6 | 40 | 32.83 | 29.15 |
10 | 375 | 0.8 | 30 | 28.4 | 24.4 |
11 | 400 | 0.6 | 20 | 48.77 | 40.78 |
12 | 400 | 1 | 20 | 35.63 | 29.98 |
13 | 450 | 0.6 | 20 | 72.48 | 65.7 |
14 | 400 | 0.6 | 20 | 47.12 | 39.38 |
15 | 425 | 0.8 | 30 | 51.26 | 44.22 |
16 | 375 | 0.8 | 10 | 33.43 | 26.17 |
17 | 375 | 0.4 | 30 | 36.94 | 31.91 |
18 | 400 | 0.6 | 20 | 47.43 | 39.52 |
19 | 400 | 0.6 | 20 | 47.35 | 39.61 |
20 | 400 | 0.6 | 20 | 47.62 | 40.62 |
表4 CCD试验设计与结果
试验 | 自变量(X) | 响应值(Y) | |||
---|---|---|---|---|---|
温度(X1)/°C | 气体流量(X2)/L·min-1 | RH(X3)/% | TCE去除率(Y1)/% | CO2选择性(Y2)/% | |
1 | 425 | 0.8 | 10 | 56.76 | 47.39 |
2 | 400 | 0.6 | 0 | 43.13 | 31.69 |
3 | 400 | 0.2 | 20 | 55.27 | 48.19 |
4 | 425 | 0.4 | 10 | 61.84 | 52.87 |
5 | 375 | 0.4 | 10 | 40.37 | 33.92 |
6 | 425 | 0.4 | 30 | 57.61 | 49.42 |
7 | 400 | 0.6 | 20 | 48.68 | 40.68 |
8 | 350 | 0.6 | 20 | 27.61 | 24.29 |
9 | 400 | 0.6 | 40 | 32.83 | 29.15 |
10 | 375 | 0.8 | 30 | 28.4 | 24.4 |
11 | 400 | 0.6 | 20 | 48.77 | 40.78 |
12 | 400 | 1 | 20 | 35.63 | 29.98 |
13 | 450 | 0.6 | 20 | 72.48 | 65.7 |
14 | 400 | 0.6 | 20 | 47.12 | 39.38 |
15 | 425 | 0.8 | 30 | 51.26 | 44.22 |
16 | 375 | 0.8 | 10 | 33.43 | 26.17 |
17 | 375 | 0.4 | 30 | 36.94 | 31.91 |
18 | 400 | 0.6 | 20 | 47.43 | 39.52 |
19 | 400 | 0.6 | 20 | 47.35 | 39.61 |
20 | 400 | 0.6 | 20 | 47.62 | 40.62 |
来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著性 |
---|---|---|---|---|---|---|
合计 | 2547.81 | 19 | ||||
模型 | 2534.11 | 9 | 281.57 | 205.50 | < 0.0001 | 显著 |
X1 | 1981.81 | 1 | 1981.81 | 1446.38 | < 0.0001 | 显著 |
X2 | 273.82 | 1 | 273.82 | 199.84 | < 0.0001 | 显著 |
X3 | 94.04 | 1 | 94.04 | 68.63 | < 0.0001 | 显著 |
X1X2 | 2.05 | 1 | 2.05 | 1.50 | 0.2493 | 不显著 |
X1X3 | 0.20 | 1 | 0.20 | 0.15 | 0.7093 | 不显著 |
X2X3 | 1.03 | 1 | 1.03 | 0.75 | 0.4063 | 不显著 |
X1² | 9.04 | 1 | 9.04 | 6.60 | 0.0280 | 显著 |
X2² | 7.58 | 1 | 7.58 | 5.53 | 0.0405 | 显著 |
X3² | 146.83 | 1 | 146.83 | 107.16 | < 0.0001 | 显著 |
残差 | 13.70 | 10 | 1.37 | |||
失拟项 | 11.16 | 5 | 2.23 | 4.38 | 0.0653 | 不显著 |
纯误差 | 2.54 | 5 | 0.51 |
表5 TCE去除率二次模型的ANOVA结果
来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著性 |
---|---|---|---|---|---|---|
合计 | 2547.81 | 19 | ||||
模型 | 2534.11 | 9 | 281.57 | 205.50 | < 0.0001 | 显著 |
X1 | 1981.81 | 1 | 1981.81 | 1446.38 | < 0.0001 | 显著 |
X2 | 273.82 | 1 | 273.82 | 199.84 | < 0.0001 | 显著 |
X3 | 94.04 | 1 | 94.04 | 68.63 | < 0.0001 | 显著 |
X1X2 | 2.05 | 1 | 2.05 | 1.50 | 0.2493 | 不显著 |
X1X3 | 0.20 | 1 | 0.20 | 0.15 | 0.7093 | 不显著 |
X2X3 | 1.03 | 1 | 1.03 | 0.75 | 0.4063 | 不显著 |
X1² | 9.04 | 1 | 9.04 | 6.60 | 0.0280 | 显著 |
X2² | 7.58 | 1 | 7.58 | 5.53 | 0.0405 | 显著 |
X3² | 146.83 | 1 | 146.83 | 107.16 | < 0.0001 | 显著 |
残差 | 13.70 | 10 | 1.37 | |||
失拟项 | 11.16 | 5 | 2.23 | 4.38 | 0.0653 | 不显著 |
纯误差 | 2.54 | 5 | 0.51 |
来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著性 |
---|---|---|---|---|---|---|
合计 | 2107.39 | 19 | ||||
模型 | 2094.74 | 9 | 232.75 | 184.00 | < 0.0001 | 显著 |
X1 | 1606.41 | 1 | 1606.41 | 1269.94 | < 0.0001 | 显著 |
X2 | 243.05 | 1 | 243.05 | 192.14 | < 0.0001 | 显著 |
X3 | 14.98 | 1 | 14.98 | 11.84 | 0.0063 | 显著 |
X1X2 | 2.62 | 1 | 2.62 | 2.07 | 0.1805 | 不显著 |
X1X3 | 1.01 | 1 | 1.01 | 0.80 | 0.3930 | 不显著 |
X2X3 | 0.03 | 1 | 0.03 | 0.03 | 0.8734 | 不显著 |
X1² | 38.45 | 1 | 38.45 | 30.40 | 0.0003 | 显著 |
X2² | 1.46 | 1 | 1.46 | 1.15 | 0.3082 | 不显著 |
X3² | 145.67 | 1 | 145.67 | 115.16 | < 0.0001 | 显著 |
残差 | 12.65 | 10 | 1.26 | |||
失拟项 | 10.49 | 5 | 2.10 | 4.85 | 0.0541 | 不显著 |
纯误差 | 2.16 | 5 | 0.43 |
表6 CO2选择性二次模型的ANOVA结果
来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著性 |
---|---|---|---|---|---|---|
合计 | 2107.39 | 19 | ||||
模型 | 2094.74 | 9 | 232.75 | 184.00 | < 0.0001 | 显著 |
X1 | 1606.41 | 1 | 1606.41 | 1269.94 | < 0.0001 | 显著 |
X2 | 243.05 | 1 | 243.05 | 192.14 | < 0.0001 | 显著 |
X3 | 14.98 | 1 | 14.98 | 11.84 | 0.0063 | 显著 |
X1X2 | 2.62 | 1 | 2.62 | 2.07 | 0.1805 | 不显著 |
X1X3 | 1.01 | 1 | 1.01 | 0.80 | 0.3930 | 不显著 |
X2X3 | 0.03 | 1 | 0.03 | 0.03 | 0.8734 | 不显著 |
X1² | 38.45 | 1 | 38.45 | 30.40 | 0.0003 | 显著 |
X2² | 1.46 | 1 | 1.46 | 1.15 | 0.3082 | 不显著 |
X3² | 145.67 | 1 | 145.67 | 115.16 | < 0.0001 | 显著 |
残差 | 12.65 | 10 | 1.26 | |||
失拟项 | 10.49 | 5 | 2.10 | 4.85 | 0.0541 | 不显著 |
纯误差 | 2.16 | 5 | 0.43 |
1 | BAHRAMI H, ESLAMI A, NABIZADEH R, et al. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: optimization using response surface methodology[J]. Journal of Cleaner Production, 2018, 198: 1210-1218. |
2 | 雷丽丹, 周正伟, 高雅, 等. 电化学氧化改性石墨毡电芬顿体系对三氯乙烯的降解研究[J]. 安全与环境工程, 2021, 28(3): 108-116. |
LEI Lidan, ZHOU Zhengwei, GAO Ya, et al. TCE treatment in electro-Fenton system with electrochemical oxidation modified graphite felt electrode[J]. Safety and Environmental Engineering, 2021, 28(3): 108-116. | |
3 | BLANCH-RAGA N, PALOMARES A E, MARTÍNEZ-TRIGUERO J, et al. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation[J]. Applied Catalysis B: Environmental, 2016, 187(15): 90-97. |
4 | 王曼凝, 颜廷春, 耿炎, 等. 磁场-真菌生物滴滤器去除三氯乙烯废气的研究[J]. 西南大学学报(自然科学版), 2021, 43(5): 172-181. |
WANG Manning, YAN Tingchun, GENG Yan, et al. Removal of trichloroethylene by a magnetic field-fungal biotrickling filter[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(5): 172-181. | |
5 | 陈立, 刘霄龙, 施文博, 等. 氯代挥发性有机物CVOCs催化氧化的研究进展[J]. 环境工程, 2017, 35(10): 114-119. |
CHEN Li, LIU Xiaolong, SHI Wenbo, et al. Research progress of catalytic oxidation of CVOCs[J]. Environmental Engineering, 2017, 35(10): 114-119. | |
6 | DIVAKAR Duraiswami, Manuel ROMERO-SÁEZ, Beñat PEREDA-AYO, et al. Catalytic oxidation of trichloroethylene over Fe-zeolites[J]. Catalysis Today, 2011, 176(1): 357-360. |
7 | 梁川, 朱磊, 于鹏, 等. 负载型复合氧化物催化剂催化燃烧氯苯性能研究[J]. 功能材料, 2021, 52(5): 5012-5017. |
LIANG Chuan, ZHU Lei, YU Peng, et al. Performance study on the catalytic combustion of chlorobenzene by supported composite oxide catalysts[J]. Journal of Functional Materials, 2021, 52(5): 5012-5017. | |
8 | SUN W, GONG B, PAN J, et al. Catalytic combustion of CVOCs over Cr x Ti1- x oxide catalysts[J]. Journal of Catalysis, 2020, 391: 132-144. |
9 | 方志勇, 王英普, 张帅, 等. 含氯挥发性有机物催化燃烧研究进展[J]. 工业催化, 2021, 29(5): 10-18. |
FANG Zhiyong, WANG Yingpu, ZHANG Shuai, et al. Research advancements on catalytic combustion of chlorinated volatile organic compounds[J]. Industrial Catalysis, 2021, 29(5): 10-18. | |
10 | 孙静, 董一霖, 李法齐, 等. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315. |
SUN Jing, DONG Yilin, LI Faqi, et al. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve[J]. CIESC Journal, 2021, 72(6): 3306-3315. | |
11 | 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773. |
FENG Aihu, YU Yang, YU Yun, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773. | |
12 | 宇富航, 李永红, 鲁倩文, 等. 以CoMn2O4为催化剂氧化二甲苯的研究[J]. 化学工业与工程, 2021, 38(4): 25-36. |
YU Fuhang, LI Yonghong, LU Qianwen, et al. Study on the oxidation of xylene with CoMn2O4 as catalyst[J]. Chemical Industry and Engineering, 2021, 38(4): 25-36. | |
13 | 王玉亭, 任凯, 沈伯雄, 等. 燃煤烟气条件下锰铈基催化剂对邻二甲苯催化氧化[J]. 化工进展, 2020, 39(8): 3102-3109. |
WANG Yuting, REN Kai, SHEN Boxiong, et al. MnCe based catalyst for o-xylene catalytic oxidation from coal-combustion flue gas[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3102-3109. | |
14 | 张烁, 吴卫红, 杨洋, 等. 老化对钴铈基催化剂催化氧化丙烷的影响[J]. 中国环境科学, 2021, 41(2): 614-621. |
ZHANG Shuo, WU Weihong, YANG Yang, et al. Effect of aging on propane catalytic oxidation over Co-Ce catalyst[J]. China Environmental Science, 2021, 41(2): 614-621. | |
15 | 李梦翔, 周月, 刘明庆, 等. 沸石分子筛材料去除CVOCs的研究进展[J]. 现代化工, 2021, 41(5): 59-63. |
LI Mengxiang, ZHOU Yue, LIU Mingqing, et al. Research progress in removing CVOCs by zeolite molecular sieve[J]. Modern Chemical Industry, 2021, 41(5): 59-63. | |
16 | ZHAO H, DONG F, HAN W, et al. Study of morphology-dependent and crystal-plane effects of CeMnO x catalysts for 1,2-dichlorobenzene catalytic elimination[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18055-18064. |
17 | YANG S, ZHAO H, DONG F, et al. Highly efficient catalytic combustion of o-dichlorobenzene over three-dimensional ordered mesoporous cerium manganese bimetallic oxides: a new concept of chlorine removal mechanism[J]. Molecular Catalysis, 2019, 463: 119-129. |
18 | CHEN J, CHEN X, YAN D, et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants[J]. Applied Catalysis B: Environmental, 2019, 250: 396-407. |
19 | 徐源, 石瑞琦, 黄大俊, 等. 响应面法优化Co3O4制备及其光催化性能[J]. 重庆理工大学学报(自然科学), 2021, 35(5): 74-79. |
XU Yuan, SHI Ruiqi, HUANG Dajun, et al. Optimization of Co3O4 preparation and photocatalytic properties by response surface method[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(5): 74-79. | |
20 | 彭旭, 陈际雨. 催化燃烧处理环己酮废气的响应面法优化[J]. 浙江化工, 2018, 49(4): 38-43. |
PENG Xu, CHEN Jiyu. Process optimization of cyclohexanone waste gas by catalytic combustion based on response surface method[J]. Zhejiang Chemical Industry, 2018, 49(4): 38-43. | |
21 | 李钰琦, 王黎, 鲁逸飞, 等. 响应面法优化超临界Ir-Ta/Ti催化氧化处理焦化废水[J]. 现代化工, 2020, 40(5): 165-169, 175. |
LI Yuqi, WANG Li, LU Yifei, et al. Optimization of Ir-Ta/Ti catalytic oxidation of coking wastewater in supercritical reaction by response surface methodology[J]. Modern Chemical Industry, 2020, 40(5): 165-169, 175. | |
22 | 马越, 霍晓东, 陶炜, 等. 基于铜基催化剂的苯催化氧化实验研究[J]. 燃烧科学与技术, 2019, 25(2): 154-160. |
MA Yue, HUO Xiaodong, TAO Wei, et al. Experimental study on the catalytic oxidation of benzene compounds based on Cu-based catalysts[J]. Journal of Combustion Science and Technology, 2019, 25(2): 154-160. | |
23 | YANG J, YE Z, WANG G, et al. Neuro-genetic machine learning framework accelerates the optimization of Ag/MnO x catalyst for total oxidation of toluene[J]. Applied Catalysis A: General, 2021, 622: 118221. |
24 | CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeO y into MnO x -based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B: Environmental, 2018, 224: 825-835. |
25 | DU J, QU Z, DING C, et al. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach[J]. Applied Surface Science, 2018, 433: 1025-1035. |
26 | LIN X, LI S, HE H, et al. Evolution of oxygen vacancies in MnO x -CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 91-102. |
27 | DONG Yuming, LI Kun, JIANG Pingping, et al. Simple hydrothermal preparation of α-, β-, and γ-MnO2 and phase sensitivity in catalytic ozonation[J]. RSC Advances, 2014, 4(74): 39167-39173. |
28 | LIU G, YUE R, JIA Y, et al. Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis[J]. Particuology, 2013, 11(4): 454-459. |
29 | HAN Yifan, CHEN Fengxi, ZHONG Ziyi, et al. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15[J]. The Journal of Physical Chemistry B, 2006, 110(48): 24450-24456. |
30 | KUMAR P, KUMAR P, KUMAR A, et al. Structural, morphological, electrical and dielectric properties of Mn doped CeO2 [J]. Journal of Alloys and Compounds, 2016, 672: 543-548. |
31 | CHANG Tian, CHEN Qingcai, FAN Hao, et al. Removal mechanism and quantitative control of trichloroethylene in a post-plasma-catalytic system over Mn-Ce/HZSM-5 catalysts[J]. Catalysis Science & Technology, 2021, 11(11): 3746-3761. |
32 | WENG X, LONG Y, WANG W, et al. Structural effect and reaction mechanism of MnO2 catalysts in the catalytic oxidation of chlorinated aromatics[J]. Chinese Journal of Catalysis, 2019, 40(5): 638-646. |
33 | SEONG G, DEJHOSSEINI M, ADSCHIRI T. A kinetic study of catalytic hydrothermal reactions of acetaldehyde with cubic CeO2 nanoparticles[J]. Applied Catalysis A: General, 2018, 550: 284-296. |
34 | MAY Y, WANG W, HAN Y, et al. Insights into facet-dependent reactivity of Cu-CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction[J]. Chinese Journal of Catalysis, 2020, 41(6): 1017-1027. |
35 | RONG S, ZHANG P, LIU F, et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catalysis, 2018, 8(4): 3435-3446. |
36 | WANG Y, DENG W, WANG Y, et al. A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J]. Molecular Catalysis, 2018, 459: 61-70. |
37 | 刘森, 黄锐, 孙培永, 等. Mn/Ti-Zr复合氧化物催化苯甲酸甲酯选择性加氢[J]. 精细化工, 2021, 38(4): 782-789. |
LIU Sen, HUANG Rui, SUN Peiyong, et al. Selective hydrogenation of methyl benzoate catalyzed by Mn/Ti-Zr mixed oxides[J]. Fine Chemicals, 2021, 38(4): 782-789. | |
38 | 凌昊, 孟捷, 陶进国, 等. Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气[J]. 环境工程学报, 2020, 14(11): 3092-3101. |
LING Hao, MENG Jie, TAO Jinguo, et al. Catalytic degradation of p-xylene waste gas by Ce-ZnO/AC under vacuum ultraviolet irradiation[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3092-3101. | |
39 | WANG Jinlong, ZHANG Pengyi, LI Jinge, et al. Room-temperature oxidation of formaldehyde by layered manganese oxide: effect of water[J]. Environmental Science & Technology, 2015, 49(20): 12372-12379. |
40 | 吴彦丽, 王慧, 吴少华, 等. 低温催化氧化氯苯类有机物的催化剂研究进展[J]. 化工新型材料, 2021, 49(1): 243-246. |
WU Yanli, WANG Hui, WU Shaohua, et al. Research progress on catalyst for low-temperature oxidation of chlorobenzene[J]. New Chemical Materials, 2021, 49(1): 243-246. | |
41 | 殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056. |
YIN Ke, CHEN Ruiyang, LIU Zhiming. Catalytic removal of toluene over manganese-based oxide catalysts[J]. Materials Reports, 2020, 34(23): 23051-23056. | |
42 | 李树娜, 宋佩, 张金丽, 等. CeO2-MnO x 催化剂形貌对低浓度甲烷催化燃烧反应性能的影响[J]. 燃料化学学报, 2018, 46(5): 615-624. |
LI Shuna, SONG Pei, ZHANG Jinli, et al. Morphological effect of CeO2-MnO x catalyst on their catalytic performance in lean methane combustion[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 615-624. | |
43 | 彭超, 于迪, 王斓懿, 等. 铈基氧化物催化燃烧柴油机炭烟颗粒的性能及机理研究进展[J]. 中国科学: 化学, 2021, 51(8): 1029-1059. |
PENG Chao, YU Di, WANG Lanyi, et al. Recent advances in performances and mechanisms of cerium-based oxide catalysts for catalytic combustion of soot particles released from diesel engines[J]. Scientia Sinica Chimica), 2021, 51(8): 1029-1059. | |
44 | 权燕红, 苗超, 李涛, 等. 不同制备方法对氧化铈结构及甲苯催化燃烧性能的影响[J]. 燃料化学学报, 2021, 49(2): 211-219. |
QUAN Yanhong, MIAO Chao, LI Tao, et al. Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 211-219. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[3] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[4] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[5] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[8] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[9] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[10] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[11] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[14] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[15] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |