1 | 孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756. | 1 | SUN Yi, YU Liliang, HUANG Haobin, et al. Development trend and practical progress of advanced oxidation technology for refractory organic wastewater treatment[J]. CIESC Journal, 2017, 68(5): 1743-1756. | 2 | 安路阳, 刘睿, 王钟欧, 等. 含酚废水离心萃取脱酚技术研究[J]. 环境工程, 2016, 34(S1): 62-65, 150. | 2 | AN Luyang, LIU Rui, WANG Zhongou, et al. Study on centrifugal extraction of phenolic wastewater[J]. Environmental Engineering, 2016, 34(S1): 62-65, 150. | 3 | 宋迪慧, 安路阳, 张立涛, 等. 响应曲面法优化电化学耦合体系预处理焦化废水[J]. 化工学报, 2018, 69(9): 4001-4011. | 3 | SONG Dihui, AN Luyang, ZHANG Litao, et al. Optimization of electrochemical coupling system for pretreatment of coking wastewater by response surface method[J]. CIESC Journal, 2018, 69(9): 4001-4011. | 4 | DING J, SONG D H, LIU X S, et al. Iron species-impregnated granular activated carbon as modified particle electrodes applied in benzothiazole adsorption and electrocatalytic degradation[J]. Journal of Harbin Institute of Technology, 2017, 24(3): 39-49. | 5 | WU X H, ZHANG Y, WU G M, et al. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models(ASM)[J]. Journal of Environmental Management, 2016, 165(1): 235-242. | 6 | 丁杰, 宋昭, 宋迪慧, 等. 三维电催化处理苯并噻唑反应器结构优化[J]. 化工进展, 2017, 36(1): 91-99. | 6 | DING Jie, SONG Zhao, SONG Dihui, et al. Structural optimization of benzothiazole reactor treated with three-dimensional electrocatalysis[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 91-99. | 7 | HE Y P, LIN H B, GUO Z C, et al. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants[J]. Sep. Purif. Technol., 2019, 212(1/2): 802-821. | 8 | FAJARDO A S, MARTINS R C, SILVA D R, et al. Electrochemical abatement of amaranth dye solutions using individual or an assembling of flow cells with Ti/Pt and Ti/Pt-SnSb anodes[J]. Sep. Purif. Technol., 2017, 179(9): 194-203. | 9 | CERCADO-QUEZADA B, DELIA M L, BERGEL A. Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes[J]. Electrochem. Commun., 2011, 13(4): 440-443. | 10 | XU L, LI M, XU W. Preparation and characterization of Ti/SnO2-Sb electrode with copper nanorods for AR73 removal[J]. Electrochim Acta, 2015, 166(6): 64-72. | 11 | LIN L, MENG X Y, LI Q Y, et al. Crittenden, electrochemical oxidation of microcystis aeruginosa using a Ti/RuO2 anode: contributions of electrochemically generated chlorines and hydrogen peroxide[J]. Environ. Sci. Pollut. R, 2018, 25(8/9): 27924-27934. | 12 | LIN H, NIU J F, DING S Y, et al. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes[J]. Water Res., 2012, 46 (2): 2281-2289. | 13 | LIU B, WANG S, WANG C Y, et al. Surface morphology and electrochemical properties of RuO2-doped Ti/IrO2-ZrO2 anodes for oxygen evolution reaction[J]. J. Alloy. Compd., 2019, 778 (4): 593-602. | 14 | ZHANG W L, LIN H B, KONG H S,et al. Preparation and characterization of lead dioxide electrode with three-dimensional porous titanium substrate for electrochemical energy storage[J]. Electrochim Acta, 2014, 139(3): 209-216. | 15 | MARKOU V, KONTOGIANNI M C, FRONTISTIS Z, et al. Electrochemical treatment of biologically pre-treated dairy wastewater using dimensionally stable anodes[J]. J. Environ. Manage, 2017, 202 (7): 217-224. | 16 | LI X L, SHAO D, XU H, et al. Fabrication of a stable Ti/TiO(x)Hy/Sb-SnO2 anode for aniline degradation in different electrolytes[J]. Chemical Engineering Journal, 2016, 285(3): 1-10. | 17 | ZHANG W L, KONG H S, LIN H B, et al. Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate[J]. J. Alloy. Compd., 2015, 650 (9) 705-711. | 18 | 徐鹏飞. 氧化铈微纳结构的调控与性能研究[D]. 北京: 北京科技大学, 2015. | 18 | XU Pengfei. Study on the regulation and properties of cerium oxide micro-nano structure[D]. Beijing:University of Science & Technology Beijing, 2015. | 19 | 胡诗迁. 聚吡咯导电水凝胶的制备及其生物医学应用研究[D]. 广州:华南理工大学, 2019. | 19 | HU Shiqian. Preparation and biomedical application of polypyrrole conductive hydrogels[D]. Guangzhou: South China University of Technology, 2019. | 20 | 付思晗. 聚吡咯/部分还原氧化石墨烯复合材料作为锂/钾离子电池正极材料[D]. 广州: 华南理工大学, 2019. | 20 | FU Sihan. Polypyrrole/partially reduced go composites are used as anode materials for lithium/potassium ion batteries[D]. Guangzhou: South China University of Technology, 2019. | 21 | CAO J L, WU Z C, LI H X, et al. Inactivation of PbO2 anodes during oxygen evolution in sulfuric acid solution[J]. Acta Physico-Chimica Sinica, 2007, 23(10): 1515-1519. | 22 | 熊传溪, 闻荻江. 高分子原位复合材料的研究进展[J]. 材料开发与应用, 1999, 14(1): 35-38. | 22 | XIONG Chuanxi, WEN Dijiang. Research progress of polymer in-situ composites[J]. Development and Application of Materials, 1999,14(1):35-38. | 23 | RAMOS P, ELENA R R, JESUS G, et al. Understanding the photocatalytic properties of the Pt/CeOx/TiO2 systems: structural effects on the electronic and optic properties[J]. ChemPhysChem, 2019, 47(3): 239-257. | 24 | LYU J H, HAN H B, WU Q, et al. Enhancement of the eletrocatalytic oxidation of dyeing wastewater (reactive brilliant biue KN-R) over the Ce-modified Ti-PbO2 eletrode with surface hydrophobicity[J]. Journal of Solid State Electrochemistry, 2019, 23(3): 847-859. | 25 | PER-OLOF L, ARNE A, Oxides of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol[J]. Applied Catalysis B: Environmental,2000, 24(3/4): 175-192. | 26 | 王勋华, 周琦, 张蓉, 等. Ti/CeO2-PTFE-PbO2电极的制备及其电催化氧化性能[J]. 化工学报, 2010, 61(5): 1190-1195. | 26 | WANG Xunhua, ZHOU Qi, ZHANG Rong, et al. Preparation of Ti/ CEO2-PTFE-PBO2 electrode and its electrocatalytic oxidation performance [J]. CIESC Journal, 2010, 61(5): 1190-1195. | 27 | YIN Z, ZHENG Y M, WANG H, et al. Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: toward an advanced electrocatalyst for alcohol oxidation[J]. ACS Nano, 2017, 11(12): 12365-12377. | 28 | LYU J H, HAN H B, WU Q, et al. Fabrication of Ti/black TiO2-PbO2 micro/nanostructures with tunable hydrophobic/hydrophilic characteristics and their photoelectrocatalytic performance[J]. Journal of Solid State Electrochemistry, 2019, 23: 847-859. | 29 | 周键, 关文学, 王三反, 等. Ti/IrO2+MnO2电极在酸性溶液中的电化学活性表面积[J]. 化工进展, 2019, 38(8): 3782-3787. | 29 | ZHOU Jian, GUAN Wenxue, WANG Sanfan, et al. Electrochemical active surface area of Ti/IrO2+MnO2 electrode in acidic solution [J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3782-3787. | 30 | GRUPIONI A A F, ARASHIRO E, LASSAIL T A F. Voltammetric characterization of an iridium oxide-based system: the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode[J]. Electrochimica Acta, 2003, 48(4): 407- 418. | 31 | XIA Y J, DAI Q Z. Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode: kinetics, energy demands and reaction pathways[J]. Chemosphere, 2018, 205(11): 215-222 | 32 | ARDIZZONE S, FREGONARA G, TRASATTI S. Inner and outer active surface of RuO2 electrodes[J]. Electrochimica Acta, 1990, 35(1): 263-267. | 33 | DING H Y, FENG Y J, LIU J F, Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition[J]. Journal of the American Chemical Society,2007, 61(27): 4920-4923. | 34 | FENG Y J, YANG L S, LIU J F, et al. Electrochemical technologies for wastewater treatment and resource reclamation[J]. Environ. Sci.: Water Res. Technol., 2016, 2(6): 800-831. | 35 | PER-OLOF L, ARNE A. Oxides of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol[J]. Applied Catalysis B: Environmental, 2000, 24(3/4): 175-192. | 36 | CAO M H, HU C W, PENG G, et al. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorodsn[J]. Journal of the American Chemical Society, 2003, 125(17): 4982- 4983. | 37 | WANG C, YIN L, XU Z C, et al. Electrochemical degradation of enrofloxacin by lead dioxide anode: kinetics, mechanism and toxicity evaluation[J]. Chemical Engineering Journal, 2017, 326 (11): 911-920. |
|