1 | LIU C M, DIAO Z H, HUO W Y, et al. Simultaneous removal of Cu2+ and bisphenol A by a novel biocharsupported zero valent iron from aqueous solution: synthesis, reactivity and mechanism [J]. Environmental Pollution, 2018, 239: 698-705. | 2 | WANG L, CHUA H, ZHOU Q, et al. Role of cell surface components on Cu2+ adsorption by Pseudomonas putida 5-x isolated from electroplating effluent[J]. Water Research, 2003, 37: 561-568. | 3 | 娄保锋, 朱利中, 杨坤. 苯及其取代物与对硝基苯胺在沉积物上的竞争吸附[J]. 中国环境科学, 2004, 24(3): 327-331. | 3 | LOU Baofeng, ZHU Lizhong, YANG Kun. Competitive sorption behavior between p-nitroaniline and benzene and its monosubstituent in sediment-water system[J]. China Environmental Science, 2004, 24(3): 327-331. | 4 | 奚旦立, 孙裕生. 环境监测[M]. 4版. 北京: 高等教育出版社, 2010: 9. | 4 | XI Danli, SUN Yusheng. Environmental monitoring[M]. 4th ed. Beijing: Higher Education Press, 2010: 9. | 5 | JIANG Y, PANG H, LIAO B. Removal of copper() ions from aqueous solution by modified bagasse[J]. Journal of Hazardous Materials, 2009, 164: 1–9. | 6 | WANG J D, ZHANG T, MEIY, et al. Treatment of reverse-osmosis concentrate of printing and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP)[J]. Chemosphere, 2018, 201: 621-626. | 7 | TONG C L, GUO Y, LIU W P. Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection[J]. Chemosphere, 2010, 81(3): 430-435. | 8 | LKE I A, LINDEN K G, ORBELL J D, et al. Critical review of the science and sustainability of persulphate advanced oxidation processes[J]. Chemical Engineering Journal, 2018, 338: 651-669. | 9 | WEI S, LI J, WANG Z Y, et al. A mini review of activated methods to persulfate-based advanced oxidation process[J]. Water Science and Technology, 2019, 79(3): 573-579. | 10 | WANG Y Y, DONG H R, LI L, et al. Metal-free activation of persulfates by corn stalk biochar for the degradation of antibiotic norfloxacin: activation factors and degradation mechanism[J]. Chemosphere, 2019, 237: 124454. | 11 | YAASHIKAA P P, KUMAR P S, VARJANI S J, et al. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants[J]. Bioresource Technology, 2019, 292: 122030. | 12 | HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate [J]. Journal of Materials Chemistry A, 2018, 6(19):8978-8985. | 13 | DA Q Y, CHEN Y, YAN J C, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important role of biochar defect structures[J]. Chemical Engineering Journal, 2019, 370: 614-624. | 14 | 姚淑华, 马锡春, 李士凤. 秸秆生物炭活化过硫酸盐氧化降解苯酚[J]. 中国环境科学, 2018, 38(11): 4166-4172. | 14 | YAO Shuhua, MA Xichun, LI Shifeng. Straw biochar activated persulfate oxidation and degradation of phenol[J]. China Environmental Science, 2018, 38(11): 4166-4172. | 15 | SUN K, KANG M J, ZHANG J J, et al. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental Science and Technology, 2013, 47: 11473-11481. | 16 | YANG E, YAO C, LIU Y, et al. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel[J]. Fuel, 2018, 211: 121-129. | 17 | WANG Y X, AO Z M. Activation of peroxymonosulfate by carbonaceous oxygen groups:experimental and density functional theory calculations[J]. Applied catalysis B: Environmental, 2016, 198: 295-302. | 18 | DUAN X, SUN H, AO Z, et al. Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation[J]. Carbon, 2016, 107: 371-378. | 19 | DUAN X, AO Z, ZHOU L, et al. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation[J]. Applied Catalysis B: Environmental, 2016, 188: 98-105. | 20 | WU Y, GUO J, HAN Y J, et al. Insights into the mechanism of persulfate activated by rice straw biochar for the degradation of aniline[J]. Chemosphere, 2018, 200: 373-379. | 21 | ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen[J]. Water Research, 2017, 125: 209-218. | 22 | PAN C, FU L B, DING Y B, et al. Homogeneous catalytic activation of peroxymonosulfate and heterogeneous reductive regeneration of Co2+ by MoS2: the pivotal role of pH[J]. The Science of the Total Environment, 2020, 712: 136447. | 23 | YU W C, LIAN F, CUI G N, et al. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution[J]. Chemosphere, 2018, 193: 8-16. | 24 | ZHANG L P, LI W Q, CAO H S, et al. Ultra-efficient sorption of Cu2+ and Pb2+ ions by light biochar derived from Medulla tetrapanacis[J]. Bioresource Technology, 2019, 291: 121818. | 25 | 陈炜, 张宇东, 蔡珺晨, 等. 壳聚糖负载磺化酞菁钴催化过硫酸盐降解甲基橙的研究[J]. 中国环境科学, 2019, 39(1): 157-163. | 25 | CHEN Wei, ZHANG Yudong, CAI Junchen, et al. Degradation of methyl orange by chitosan microsphere supported cobalt tetrasulfophthalocyanine activated persulfate[J]. China Environmental Science, 2019, 39(1): 157-163. | 26 | YUN E T, LEE J H, KIM J, et al. Identifying the nonradical mechanism in the peroxymonosulfate aactivation process: singlet oxygenation versus mediated electron transfer[J]. Environmental Science and Technology, 2018, 52(12): 7032-7042. | 27 | YIN R L, GUO W Q, WANG H Z, et al. Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and nonradical mechanisms[J]. Chemical Engineering Journal, 2018, 334: 2539-2546. | 28 | HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A, 2018, 6: 8978-8985. | 29 | ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process[J]. Environmental Science and Technology, 2015, 49: 12941-12950. |
|