1 | ZHANG C, LI Y, SHUAI D, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: a review[J]. Chemosphere, 2019, 214: 462-479. | 2 | ALTINTAS Z, GITTENS M, POCOCK J, et al. Biosensors for waterborne viruses: detection and removal[J]. Biochimie, 2015, 115: 144-154. | 3 | GALL A M, MARI?AS B J, LU Y, et al. Waterborne viruses: a barrier to safe drinking water[J]. PLOS Pathogens, 2015, 11(6): 1004867. | 4 | SANO D, AMARASIRI M, HATA A, et al. Risk management of viral infectious diseases in wastewater reclamation and reuse: review[J]. Environment International, 2016, 91: 220-229. | 5 | 宋亮. 光催化消毒装置的制作及其水处理性能[D]. 大连: 大连理工大学, 2015. | 5 | SONG Liang.Fabrication of photocatalytic disinfection device and its wastewater treatment performance[D].Dalian: Dalian University of Technology, 2015. | 6 | NELSON K L, BOEHM A B, DAVIES-COLLEY R J, et al. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches[J].Environmental Science-Processes & Impacts, 2018, 20(8): 1089-1122. | 7 | 蔡璇. 臭氧/游离氯及其组合工艺对饮用水中病毒灭活影响因素研究[D].上海: 复旦大学, 2012. | 7 | CAI Xuan.Influencing factors of virus inactivation in drinking water by ozone and chlorine disinfection[D].Shanghai: Fudan University,2012. | 8 | XUE B, JIN M, YANG D, et al. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability[J]. Water Research, 2013, 47(10): 3329-3338. | 9 | SCHIJVEN J, TEUNIS P, SUYLEN T, et al. QMRA of adenovirus in drinking water at a drinking water treatment plant using UV and chlorine dioxide disinfection[J]. Water Research, 2019, 158: 34-45. | 10 | LIN Q F, DONG F L, MIAO Y X, et al. Removal of disinfection by-products and their precursors during drinking water treatment processes[J]. Water Environment Research, 2020, 92(5): 698-705. | 11 | MAMANE H, SHEMER H, LINDEN K G. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation[J]. Journal of Hazardous Materials, 2007, 146(3): 479-486. | 12 | BECK S E, HULL N M, POEPPING C, et al. Wavelength-dependent damage to adenoviral proteins across the germicidal UV spectrum[J]. Environmental Science & Technology, 2017, 52(1): 223-229. | 13 | WOO H, BECK S, BOCZEK L, et al. Efficacy of inactivation of human enteroviruses by dual-wavelength germicidal ultraviolet (UV-C) light emitting diodes (LEDs)[J]. Water, 2019, 11(6): 1131. | 14 | LAXMA REDDY P V, KAVITHA B, KUMAR REDDY P A, et al. TiO2-based photocatalytic disinfection of microbes in aqueous media: a review[J]. Environmental Research, 2017, 154: 296-303. | 15 | FOSTER H A, DITTA I B, VARGHESE S, et al. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity[J]. Applied Microbiology and Biotechnology, 2011, 90(6): 1847-1868. | 16 | TOMAS-GAMASA M, LUIS MASCARENAS J. TiO2-based photocatalysis at the interface with biology and biomedicine[J]. ChemBioChem, 2020, 21(3): 294-309. | 17 | 张莹, 龚昌杰, 燕宁宁, 等. 贵金属改性TiO2光催化剂的机理及研究进展[J]. 材料导报, 2011, 25(15): 46-49. | 17 | ZHANG Ying, GONG Changjie, YAN Ningning, et al.Mechanism and research progress on TiO2 photocatalyst modified with noble metal[J].Materials Reports, 2011, 25(15): 46-49. | 18 | SARAN S, ARUNKUMAR P, DEVIPRIYA S P. Disinfection of roof harvested rainwater for potable purpose using pilot-scale solar photocatalytic fixed bed tubular reactor[J]. Water Science and Technology: Water Supply, 2018, 18(1): 49-59. | 19 | ZHENG X, SHEN Z, CHENG C, et al. Electrospinning Cu-TiO2 nanofibers used for photocatalytic disinfection of bacteriophage f2: preparation, optimization and characterization[J]. RSC Advances, 2017, 7(82): 52172-52179. | 20 | ZHENG X, SHEN Z, CHENG C, et al. Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light[J]. Environmental Pollution, 2018, 237: 452-459. | 21 | CHENG R, KANG M, SHEN Z, et al. Visible-light-driven photocatalytic inactivation of bacteriophage f2 by Cu-TiO2 nanofibers in the presence of humic acid[J]. Journal of Environmental Sciences, 2019, 77: 383-391. | 22 | ASAHI R, MORIKAWA T. Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis[J]. Chemical Physics, 2007, 339(1/2/3): 57-63. | 23 | LI Q, PAGE M A, MARINAS B J, et al. Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light[J]. Environmental Science & Technology, 2008, 42(16): 6148-6153. | 24 | HOROVITZ I, AVISAR D, LUSTER E, et al. MS2 bacteriophage inactivation using a N-doped TiO2-coated photocatalytic membrane reactor: influence of water-quality parameters[J]. Chemical Engineering Journal, 2018, 354: 995-1006. | 25 | CHOI S, CHO B. Extermination of influenza virus H1N1 by a new visible-light-induced photocatalyst under fluorescent light[J]. Virus Research, 2018, 248: 71-73. | 26 | VENIERI D, GOUNAKI I, BINAS V, et al. Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2[J]. Applied Catalysis B: Environmental, 2015, 178: 54-64. | 27 | 王隽. 钌基光敏剂的合成及其在TiO2光催化体系中的催化性能研究[D]. 郑州: 郑州大学, 2015. | 27 | WANG Juan.Synthesis and photocatalytic properties of ruthenium-based photosensitizer in TiO2 catalytic system[D].Zhengzhou:Zhengzhou University, 2015. | 28 | MAHON J MAC, PILLAI S C, KELLY J M, et al. Solar photocatalytic disinfection of E.coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 170: 79-90. | 29 | 江宏富. TiO2的掺杂改性及光催化研究[D]. 合肥: 中国科学技术大学, 2006. | 29 | JIANG Hongfu.Modification of TiO2 by doping and study on its photocatalysis[D].Hefei: University of Science and Technology of China, 2006. | 30 | LIGA M V, MAGUIRE-BOYLE S J, JAFRY H R, et al. Silica decorated TiO2 for virus inactivation in drinking water-simple synthesis method and mechanisms of enhanced inactivation kinetics[J]. Environmental Science & Technology, 2013, 47(12): 6463-6470. | 31 | MONMATURAPOJ N, SRI-ON A, KLINSUKHON W, et al. Antiviral activity of multifunctional composite based on TiO2-modified hydroxyapatite[J]. Materials Science and Engineering: C, 2018, 92: 96-102. | 32 | TAKEHARA K, YAMAZAKI K, MIYAZAKI M, et al. Inactivation of avian influenza virus HIM by photocatalyst under visible light irradiation[J]. Virus Research, 2010, 151(1): 102-103. | 33 | AKHAVAN O, CHOOBTASHANI M, GHADERI E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation[J]. Journal of Physical Chemistry C, 2012, 116(17): 9653-9659. | 34 | YAMAGUCHI Y, USUKI S, KANAI Y, et al. Selective inactivation of bacteriophage in the presence of bacteria by use of ground RH-doped SrTiO3 photocatalyst and visible light[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31393-31400. | 35 | GIANNAKIS S, LIU S, CARRATALà A, et al. Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size[J]. Journal of Hazardous Materials, 2017, 339: 223-231. | 36 | SARKAR D, MONDAL B, SOM A, et al. Holey MoS2 nanosheets with photocatalytic metal rich edges by ambient electrospray deposition for solar water disinfection[J]. Global Challenges, 2018, 2(12): 1800052. | 37 | LI Y, ZHANG C, SHUAI D, et al. Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism[J]. Water Research, 2016, 106: 249-258. | 38 | CHENG R, SHEN L, YU J, et al. Photocatalytic inactivation of bacteriophage f2 with Ag3PO4/g-C3N4 composite under visible light irradiation: performance and mechanism[J]. Catalysts, 2018, 8(10): 406. | 39 | ZHANG C, LI Y, SHUAI D, et al. Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection[J]. Chemosphere, 2018, 208: 84-92. | 40 | ZHANG C, ZHANG M, LI Y, et al. Visible-light-driven photocatalytic disinfection of human adenovirus by a novel heterostructure of oxygen-doped graphitic carbon nitride and hydrothermal carbonation carbon[J]. Applied Catalysis B: Environmental, 2019, 248: 11-21. | 41 | HU X, HU C, PENG T, et al. Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag-Agl/Al2O3 under visible-light irradiation[J]. Environmental Science & Technology, 2010, 44(18): 7058-7062. | 42 | HU X, MU L, WEN J, et al. Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses[J]. Carbon, 2012, 50(8): 2772-2781. | 43 | National Science Foundation.Molecular imprinting of coronavirus attachment factors to enhance disinfection by a selective photocatalytic ?Trap-and-Zap? approach[EB/OL]. [2020-05-01].. |
|