化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5941-5955.DOI: 10.16085/j.issn.1000-6613.2024-1367
• 资源与环境化工 • 上一篇
张琼元1,2(
), 王艳萍1,2, 陆江银3, 刘海宁1, 张慧芳1, 韩文杰1, 叶秀深1(
)
收稿日期:2024-08-20
修回日期:2024-10-16
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
叶秀深
作者简介:张琼元(1997—),女,博士研究生,研究方向为MOFs吸附剂的制备与应用。E-mail:zhangqy0417@163.com。
基金资助:
ZHANG Qiongyuan1,2(
), WANG Yanping1,2, LU Jiangyin3, LIU Haining1, ZHANG Huifang1, HAN Wenjie1, YE Xiushen1(
)
Received:2024-08-20
Revised:2024-10-16
Online:2025-10-25
Published:2025-11-10
Contact:
YE Xiushen
摘要:
随着工业化进程的加速,海水卤水中溴、碘离子的提取富集,以及生活水体中卤素离子的去除等问题愈发引起人们的关注。金属有机骨架(MOFs)材料以其独特的高比表面积、可调节的孔隙结构和功能化位点,在卤素离子的吸附领域展现出显著优势。本文旨在探讨MOFs在吸附分离无机卤素离子(包括氟离子、氯离子、溴离子和碘离子)方面的应用潜力和研究进展。文中首先概述了MOFs的分类、理化特性及其制备方法,包括溶剂热法、微波/超声法、室温搅拌法等。随后,系统回顾了MOFs对不同卤素离子的吸附效能,分析了影响其吸附性能的关键因素,并阐述了吸附过程中的潜在机理。尽管MOFs在卤素离子吸附方面取得了重要进展,但仍面临稳定性、可再生性和工业化应用等挑战。最后,本文提出了对未来MOFs材料设计、稳定性研究以及工业化应用技术研究的建议,以期为环境保护和资源回收领域提供新方案。
中图分类号:
张琼元, 王艳萍, 陆江银, 刘海宁, 张慧芳, 韩文杰, 叶秀深. MOFs基材料吸附卤素离子的研究进展[J]. 化工进展, 2025, 44(10): 5941-5955.
ZHANG Qiongyuan, WANG Yanping, LU Jiangyin, LIU Haining, ZHANG Huifang, HAN Wenjie, YE Xiushen. Research progress in adsorption of halogen ions by MOFs-based materials[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5941-5955.
| 材料 | 金属中心 | 有机配体 | 测试条件 | 稳定性 | 参考文献 |
|---|---|---|---|---|---|
| UiO-66 | Zr | 对苯二甲酸 | pH=0~12 | 2个月 | [ |
| MOF-808 | Zr | 均苯三甲酸 | 沸水,浓盐酸(32%),pH=10 | 24h | [ |
| MOF-801 | Al | 富马酸 | 浓NaOH | 5次循环 | [ |
| ZIF-8 | Zn | 二甲基咪唑 | 沸水,甲醇,纯水 | 7天 | [ |
| MIL-53(Al) | Al | 对苯二甲酸 | pH=4~12 | 3天 | [ |
| MIL-101(Cr) | Cr | 对苯二甲酸 | pH=0~12 | 2个月 | [ |
| CAU-17 | Fe | 均苯三甲酸 | 0.005mol/L明矾 | 5次循环 | [ |
表1 部分常见MOFs材料的化学稳定性
| 材料 | 金属中心 | 有机配体 | 测试条件 | 稳定性 | 参考文献 |
|---|---|---|---|---|---|
| UiO-66 | Zr | 对苯二甲酸 | pH=0~12 | 2个月 | [ |
| MOF-808 | Zr | 均苯三甲酸 | 沸水,浓盐酸(32%),pH=10 | 24h | [ |
| MOF-801 | Al | 富马酸 | 浓NaOH | 5次循环 | [ |
| ZIF-8 | Zn | 二甲基咪唑 | 沸水,甲醇,纯水 | 7天 | [ |
| MIL-53(Al) | Al | 对苯二甲酸 | pH=4~12 | 3天 | [ |
| MIL-101(Cr) | Cr | 对苯二甲酸 | pH=0~12 | 2个月 | [ |
| CAU-17 | Fe | 均苯三甲酸 | 0.005mol/L明矾 | 5次循环 | [ |
| 材料 | 吸附离子 | 主要吸附机理 | 平衡吸附容量/mg·g-1 | 平衡时间/min | 循环次数 | 参考文献 |
|---|---|---|---|---|---|---|
| MOF-801 | F- | 离子交换 | 13.59 | 120 | — | [ |
| La-MOF-808 | F- | 静电作用,离子交换 | 101.40 | 60 | 5 | [ |
| Al-MOF-AC | F- | 离子交换,配位作用 | 33.68 | 10 | 5 | [ |
| Al-MOF-PUF@BC | F- | 离子交换,配位作用 | 16.52 | 30 | 3 | [ |
| 2D-MIL-53(Al) | F- | 配位作用,氢键作用 | 75.50 | 600 | 5 | [ |
| UiO-66-NH2 | F- | 离子交换,配位作用 | 47.65 | 30 | — | [ |
| MIL-88A | F- | 配位作用,静电作用 | 40.42 | 10 | — | [ |
| PDMVBA-MIL-121 | Cl- | 离子交换,静电作用,氢键作用 | 32.20 | 10 | 10 | [ |
| Cl-IIP@UiO-66 | Cl- | 电场作用,离子交换,静电作用 | 52.16 | 240 | 1000 | [ |
| NHPC | Cl- | 电场作用,静电作用 | 20.05 | 60 | 30 | [ |
| ZIF-8@PZS-C | Cl- | 电场作用,静电作用 | 22.19 | 20 | 20 | [ |
| ZIF-67/PPy | Cl- | 电场作用,静电作用,离子交换 | 11.34 | 60 | 100 | [ |
| Co-MOF@Fe/Co-LDH | Cl- | 电场作用,离子交换 | 34.20 | 120 | 25 | [ |
| Ag-UiO-(OH)2/CA | Br- | 沉淀络合,静电作用 | 642.00 | 480 | 4 | [ |
| BiOBr/PPy | Br- | 电场作用,离子交换,静电作用 | 142.00 | 180 | 10 | [ |
| Fe-MOF-808 | Br- | 离子交换,静电作用 | 247.00 | 150 | 4 | [ |
| Ni-MOF(D)/NiCo LDH | Br- | 电场作用,离子交换 | 126.30 | 240 | 5 | [ |
| Ag-Cu-MOF-74 | Br- | 沉淀络合 | 232.90 | 300 | 3 | [ |
| Ag0/C-NP | Br- | 沉淀络合 | 177.40 | 180 | — | [ |
| Ag0-UiO-66-(OH)2 | I- | 沉淀络合 | 531.98 | 180 | — | [ |
| Ag/Cu-C | I- | 沉淀络合 | 247.10 | 450 | — | [ |
| Cu x Zn1-x O-800 | I- | 沉淀络合,静电作用 | 270.80 | 1440 | 5 | [ |
| CAU-17 | I- | 沉淀络合,静电作用 | 268.90 | 240 | — | [ |
| lac-Zn | I- | 静电作用 | 31.72 | 216 | 5 | [ |
表2 不同MOFs材料对卤素离子的吸附性能
| 材料 | 吸附离子 | 主要吸附机理 | 平衡吸附容量/mg·g-1 | 平衡时间/min | 循环次数 | 参考文献 |
|---|---|---|---|---|---|---|
| MOF-801 | F- | 离子交换 | 13.59 | 120 | — | [ |
| La-MOF-808 | F- | 静电作用,离子交换 | 101.40 | 60 | 5 | [ |
| Al-MOF-AC | F- | 离子交换,配位作用 | 33.68 | 10 | 5 | [ |
| Al-MOF-PUF@BC | F- | 离子交换,配位作用 | 16.52 | 30 | 3 | [ |
| 2D-MIL-53(Al) | F- | 配位作用,氢键作用 | 75.50 | 600 | 5 | [ |
| UiO-66-NH2 | F- | 离子交换,配位作用 | 47.65 | 30 | — | [ |
| MIL-88A | F- | 配位作用,静电作用 | 40.42 | 10 | — | [ |
| PDMVBA-MIL-121 | Cl- | 离子交换,静电作用,氢键作用 | 32.20 | 10 | 10 | [ |
| Cl-IIP@UiO-66 | Cl- | 电场作用,离子交换,静电作用 | 52.16 | 240 | 1000 | [ |
| NHPC | Cl- | 电场作用,静电作用 | 20.05 | 60 | 30 | [ |
| ZIF-8@PZS-C | Cl- | 电场作用,静电作用 | 22.19 | 20 | 20 | [ |
| ZIF-67/PPy | Cl- | 电场作用,静电作用,离子交换 | 11.34 | 60 | 100 | [ |
| Co-MOF@Fe/Co-LDH | Cl- | 电场作用,离子交换 | 34.20 | 120 | 25 | [ |
| Ag-UiO-(OH)2/CA | Br- | 沉淀络合,静电作用 | 642.00 | 480 | 4 | [ |
| BiOBr/PPy | Br- | 电场作用,离子交换,静电作用 | 142.00 | 180 | 10 | [ |
| Fe-MOF-808 | Br- | 离子交换,静电作用 | 247.00 | 150 | 4 | [ |
| Ni-MOF(D)/NiCo LDH | Br- | 电场作用,离子交换 | 126.30 | 240 | 5 | [ |
| Ag-Cu-MOF-74 | Br- | 沉淀络合 | 232.90 | 300 | 3 | [ |
| Ag0/C-NP | Br- | 沉淀络合 | 177.40 | 180 | — | [ |
| Ag0-UiO-66-(OH)2 | I- | 沉淀络合 | 531.98 | 180 | — | [ |
| Ag/Cu-C | I- | 沉淀络合 | 247.10 | 450 | — | [ |
| Cu x Zn1-x O-800 | I- | 沉淀络合,静电作用 | 270.80 | 1440 | 5 | [ |
| CAU-17 | I- | 沉淀络合,静电作用 | 268.90 | 240 | — | [ |
| lac-Zn | I- | 静电作用 | 31.72 | 216 | 5 | [ |
| [1] | PENG Xianjia, DOU Wenyue, KONG Linghao, et al. Removal of chloride ions from strongly acidic wastewater using Cu(0)/Cu(Ⅱ): Efficiency enhancement by UV irradiation and the mechanism for chloride ions removal[J]. Environmental Science & Technology, 2019, 53(1): 383-389. |
| [2] | 邹志鑫, 李敏, 任晓影, 等. Mg-Al水滑石的制备及对水中氟离子的吸附效果研究[J]. 功能材料, 2024, 55(4): 4179-4184, 4200. |
| ZOU Zhixin, LI Min, REN Xiaoying, et al. Preparation of Mg-Al hydrotalcite and its adsorption effect on fluoride ions in water[J]. Journal of Functional Materials, 2024, 55(4): 4179-4184, 4200. | |
| [3] | DUAN Lizhe, YUN Qinghang, JIANG Gaoliang, et al. A review of chloride ions removal from high chloride industrial wastewater: Sources, hazards, and mechanisms[J]. Journal of Environmental Management, 2024, 353: 120184. |
| [4] | CHEN Chen, APUL Onur Guven, KARANFIL Tanju. Removal of bromide from surface waters using silver impregnated activated carbon[J]. Water Research, 2017, 113: 223-230. |
| [5] | RAHMANI Arezoo, MORADKHANI Davood, KARAMI Elahe, et al. Chloride removal from industrial soils and zinc slag in zinc production factories by sodium metabisulfite and copper(Ⅱ) sulfate[J]. Transactions of the Indian Institute of Metals, 2019, 72(3): 645-650. |
| [6] | FAJAL Sahel, MAJUMDER Dipanjan, MANDAL Writakshi, et al. Unraveling mechanistic insights into covalent organic frameworks for highly efficient sequestration of organic iodides from simulated nuclear waste[J]. Journal of Materials Chemistry A, 2023, 11(48): 26580-26591. |
| [7] | 陈爽, 黄芷君, 龚婷婷, 等. 废水中可吸附有机卤化物的来源、测定方法及去除技术的研究进展[J]. 环境监控与预警, 2020, 12(3): 20-25. |
| CHEN Shuang, HUANG Zhijun, GONG Tingting, et al. Research progress on the sources, determination methods and removal techniques of absorbable organic halidein waste water[J]. Environmental Monitoring and Forewarning, 2020, 12(3): 20-25. | |
| [8] | CHANG Junjun, LI Yuping, DUAN Feng, et al. Selective removal of chloride ions by bismuth electrode in capacitive deionization[J]. Separation and Purification Technology, 2020, 240: 116600. |
| [9] | RANI Manviri, KESHU, MEENU, et al. An updated review on environmental occurrence, scientific assessment and removal of brominated flame retardants by engineered nanomaterials[J]. Journal of Environmental Management, 2022, 321: 115998. |
| [10] | GOOD Kelly D, VANBRIESEN Jeanne M. Coal-fired power plant wet flue gas desulfurization bromide discharges to U.S. watersheds and their contributions to drinking water sources[J]. Environmental Science & Technology, 2020, 54(1): 624-625. |
| [11] | GOOD Kelly D, VANBRIESEN Jeanne M. Current and potential future bromide loads from coal-fired power plants in the Allegheny River Basin and their effects on downstream concentrations[J]. Environmental Science & Technology, 2016, 50(17): 9078-9088. |
| [12] | DE SOUZA Renata Mariane, SEIBERT Daiana, QUESADA Heloise Beatriz, et al. Occurrence, impacts and general aspects of pesticides in surface water: A review[J]. Process Safety and Environmental Protection, 2020, 135: 22-37. |
| [13] | HOU X L, FOGH C L, KUCERA J, et al. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation[J]. Science of the Total Environment, 2003, 308(1/2/3): 97-109. |
| [14] | PRAVDIVTSEVA O, MESHIK A, HOHENBERG C M, et al. I-Xe systematics of the impact plume produced chondrules from the CB carbonaceous chondrites: Implications for the half-life value of 129I and absolute age normalization of 129I-129Xe chronometer[J]. Geochimica et Cosmochimica Acta, 2017, 201: 320-330. |
| [15] | ZHAO Hang, ZHANG Qijun, LI Guanjun, et al. Bromine recovery from crude bromine salts by-products of waste printed circuit boards smelting[J]. Separation and Purification Technology, 2023, 320: 124190. |
| [16] | LIU Qilin, XIE Bo, XIAO Dan. High efficient and continuous recovery of iodine in saline wastewater by flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2022, 296: 121419. |
| [17] | LI Wanze, SHIH Yu JEN, SANCHEZ CARRETERO Daniel, et al. The electrochemical oxidation of chloride on Pt-Ni-Co-G electrodes and its application in in situ disinfection of water[J]. Chemical Engineering Journal, 2022, 428: 132069. |
| [18] | KURIKI Nanako, ASAHI Yoko, OKAMOTO Motoki, et al. Synergistic effects of arginine and fluoride on human dental biofilm control[J]. Journal of Dentistry, 2024, 149: 105307. |
| [19] | TANG Yusheng, MA Lutong, QIU Zhesheng, et al. Research on synergistic disposal and high-value utilization of secondary aluminum dross and spent carbon anode[J]. Process Safety and Environmental Protection, 2024, 184: 1094-1105. |
| [20] | WU Yang, FENECH Adam, LI Xinao, et al. Multi-process regulation of novel brominated flame retardants: Environmentally friendly substitute design, screening and environmental risk regulation[J]. Environmental Research, 2023, 237: 116924. |
| [21] | ABDALLAH Mohamed Abou-Elwafa, DRAGE Daniel S, SHARKEY Martin, et al. A rapid method for the determination of brominated flame retardant concentrations in plastics and textiles entering the waste stream[J]. Journal of Separation Science, 2017, 40(19): 3873-3881. |
| [22] | SYPALOV Sergey A, VARSEGOV Ilya S, ULYANOVSKII Nikolay V, et al. Mucolytic drugs ambroxol and bromhexine: Transformation under aqueous chlorination conditions[J]. International Journal of Molecular Sciences, 2024, 25(10): 5214. |
| [23] | NIWATTISAIWONG Soamsiri, BURMAN Kenneth D, Melissa LI-NG. Iodine deficiency: Clinical implications[J]. Cleveland Clinic Journal of Medicine, 2017, 84(3): 236-244. |
| [24] | Nhuong-Sao TON, GONCHAROV Viktoriya, ZAPATA Isain, et al. Endophthalmitis after anti-VEGF intravitreal injections with aqueous chlorhexidine versus povidone-iodine as ocular antiseptics[J]. Ophthalmology Retina, 2024, 8(6): 521-526. |
| [25] | ZHANG Qiongyuan, WANG Yanping, HAN Jilong, et al. Insights into adsorption behavior and mechanism of Br- onto nickel-aluminum layered double hydroxides intercalated with different inorganic anions[J]. Langmuir, 2024, 40(33): 17430-17443. |
| [26] | SUN Li, ZHANG Yujie, YE Xiushen, et al. Removal of I- from aqueous solutions using a biomass carbonaceous aerogel modified with KH-560[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(9): 7700-7708. |
| [27] | WANG Xiaoxin, YANG Dehong, LI Mingjie, et al. In situ growth of MOF from wood aerogel toward bromide ion adsorption in simulated saline water[J]. Langmuir, 2024, 40(9): 4966-4977. |
| [28] | XU Lingyun, ZHENG Qian, WANG Yangyang, et al. A pillared double-wall metal-organic framework adsorption membrane for the efficient removal of iodine from solution[J]. Separation and Purification Technology, 2021, 274: 118436. |
| [29] | YU Xiaoping, CUI Wanjing, ZHANG Feng, et al. Removal of iodine from the salt water used for caustic soda production by ion-exchange resin adsorption[J]. Desalination, 2019, 458: 76-83. |
| [30] | RIBES David, Emilia MORALLÓN, Diego CAZORLA-AMORÓS, et al. Electroadsorption of bromide from natural water in granular activated carbon[J]. Water, 2021, 13(5): 598. |
| [31] | NEDYALKOVA Latina, TITS Jan, RENAUDIN Guillaume, et al. Mechanisms and thermodynamic modelling of iodide sorption on AFm phases[J]. Journal of Colloid and Interface Science, 2022, 608: 683-691. |
| [32] | CHAUDHARY Mohit, RAWAT Shweta, JAIN Nishant, et al. Chitosan-Fe-Al-Mn metal oxyhydroxides composite as highly efficient fluoride scavenger for aqueous medium[J]. Carbohydrate Polymers, 2019, 216: 140-148. |
| [33] | YAO Yiyuan, WANG Chaohai, NA Jongbeom, et al. Macroscopic MOF architectures: Effective strategies for practical application in water treatment[J]. Small, 2022, 18(8): 2104387. |
| [34] | AHMADIJOKANI Farhad, GHAFFARKHAH Ahmadreza, MOLAVI Hossein, et al. COF and MOF hybrids: Advanced materials for wastewater treatment[J]. Advanced Functional Materials, 2024, 34(43): 2305527. |
| [35] | EMAM Hossam E, ABDELHAMEED Reda M, AHMED Hanan B. Adsorptive performance of MOFs and MOF containing composites for clean energy and safe environment[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104386. |
| [36] | 杨东晓, 熊启钊, 王毅, 等. 多级孔MOF的制备及其吸附分离应用研究进展[J]. 化工进展, 2024, 43(4): 1882-1896. |
| YANG Dongxiao, XIONG Qizhao, WANG Yi, et al. Progress in the preparation of hierarchically porous MOF and applications in adsorption and separation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1882-1896. | |
| [37] | LI Wenwen, ZHOU Chuncai, LI Chen, et al. Synthesis of CNT/UiO-66-NH2 adsorbent and the selective adsorption of gallium in solution[J]. Separation and Purification Technology, 2023, 323: 124464. |
| [38] | CHEN Jiuyu, GAO Qianhong, ZHANG Xiaomei, et al. Nanometer mixed-valence silver oxide enhancing adsorption of ZIF-8 for removal of iodide in solution[J]. Science of the Total Environment, 2019, 646: 634-644. |
| [39] | YU C, BOURRELLY S, MARTINEAU C, et al. Functionalization of Zr-based MOFs with alkyl and perfluoroalkyl groups: The effect on the water sorption behavior[J]. Dalton Transactions, 2015, 44(45): 19687-19692. |
| [40] | KARMAKAR Avishek, DESAI Aamod V, GHOSH Sujit K. Ionic metal-organic frameworks (iMOFs): Design principles and applications[J]. Coordination Chemistry Reviews, 2016, 307: 313-341. |
| [41] | KUMAR Pawan, POURNARA Anastasia, KIM Ki-Hyun, et al. Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications[J]. Progress in Materials Science, 2017, 86: 25-74. |
| [42] | MA Kaikai, IDREES Karam B, Florencia A SON, et al. Fiber composites of metal-organic frameworks[J]. Chemistry of Materials, 2020, 32(17): 7120-7140. |
| [43] | JIANG Hao, ALEZI Dalal, EDDAOUDI Mohamed. A reticular chemistry guide for the design of periodic solids[J]. Nature Reviews Materials, 2021, 6: 466-487. |
| [44] | FANG Xiaojie, ZHANG Di, CHANG Zhenfeng, et al. Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress[J]. Environmental Research, 2024, 243: 117816. |
| [45] | 郑丽君, 龚奇菡, 李雪静, 等. 金属有机骨架用于气体存储、吸附分离的研究进展[J]. 化工进展, 2017, 36(11): 4116-4123. |
| ZHENG Lijun, GONG Qihan, LI Xuejing, et al. Progress of metal-organic frameworks for selective gas storage, adsorption and separation[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4116-4123. | |
| [46] | GONG Wei, CHEN Zhijie, DONG Jinqiao, et al. Chiral metal-organic frameworks[J]. Chemical Reviews, 2022, 122(9): 9078-9144. |
| [47] | FREUND Ralph, ZAREMBA Orysia, ARNAUTS Giel, et al. The current status of MOF and COF applications[J]. Angewandte Chemie International Edition, 2021, 60(45): 23975-24001. |
| [48] | BURTCH Nicholas C, JASUJA Himanshu, WALTON Krista S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
| [49] | GUO Ke, HUSSAIN Ijaz, Guang’an JIE, et al. Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review[J]. Journal of Environmental Sciences, 2023, 125: 290-308. |
| [50] | CAI Dongming, YANG Zhuxian, TONG Rui, et al. Binder-free MOF-based and MOF-derived nanoarrays for flexible electrochemical energy storage: Progress and perspectives[J]. Small, 2024, 20(12): e2305778. |
| [51] | YAN Shuo, LI Weizuo, HE Dafang, et al. Recent research progress of metal-organic frameworks (MOFs) based catalysts for CO2 cycloaddition reaction[J]. Molecular Catalysis, 2023, 550: 113608. |
| [52] | YANG Ying, ZHANG Xuan, KANCHANAKUNGWANKUL Siriluk, et al. Unexpected “spontaneous” evolution of catalytic, MOF-supported single Cu(Ⅱ) cations to catalytic, MOF-supported Cu(0) nanoparticles[J]. Journal of the American Chemical Society, 2020, 142(50): 21169-21177. |
| [53] | ZHANG Shuchi, LENG Wenhua, ZHANG Shufeng, et al. In-situ active sites analysis of bifunctional metal-organic frameworks for coupled adsorption and electrochemical oxidation of PPCPs[J]. Chemical Engineering Journal, 2024, 486: 150322. |
| [54] | 惠远峰. 新型金属有机骨架材料的合成及吸附染料废水的性能研究[J]. 功能材料, 2018, 49(7): 7188-7191, 7196. |
| HUI Yuanfeng. Synthesis of a novel metal organ frames material and study on adsorption performance of dye wastewater[J]. Journal of Functional Materials, 2018, 49(7): 7188-7191, 7196. | |
| [55] | LIU Panpan, Jiafei LYU, BAI Peng. Synthesis of mixed matrix membrane utilizing robust defective MOF for size-selective adsorption of dyes[J]. Separation and Purification Technology, 2025, 354: 128672. |
| [56] | BELAYE Mitin, TADDESSE Abi M, TEJU Endale, et al. Preparation and adsorption behavior of Ce(Ⅲ)-MOF for phosphate and fluoride ion removal from aqueous solutions[J]. ACS Omega, 2023, 8(26): 23860-23869. |
| [57] | SHOOTO Ntaote David, DIKIO Charity Wokwu, WANKASI Donbebe, et al. Novel PVA/MOF nanofibres: Fabrication, evaluation and adsorption of lead ions from aqueous solution[J]. Nanoscale Research Letters, 2016, 11(1): 414. |
| [58] | WANG Yanping, ZHANG Qiongyuan, LI Kexin, et al. Efficient selective adsorption of rubidium and cesium from practical brine using a metal-organic framework-based magnetic adsorbent[J]. Langmuir, 2024, 40(18): 9688-9701. |
| [59] | HUANG Xuanjie, HUANG Lei, BABU ARULMANI Samuel Raj, et al. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review[J]. Environmental Research, 2022, 204: 112381. |
| [60] | LI Jie, WANG Xiangxue, ZHAO Guixia, et al. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews, 2018, 47(7): 2322-2356. |
| [61] | ZHANG Bo, ZHU Zerui, WANG Xuerui, et al. Water adsorption in MOFs: Structures and applications[J]. Advanced Functional Materials, 2024, 34(43): 2304788. |
| [62] | Chandan DEY, KUNDU Tanay, BISWAL Bishnu P, et al. Crystalline metal-organic frameworks (MOFs): Synthesis, structure and function[J]. Acta Crystallographica Section B Structural Science Crystal Engineering and Materials, 2014, 70(1): 3-10. |
| [63] | AMENAGHAWON Andrew Nosakhare, ANYALEWECHI Chinedu Lewis, OSAZUWA Osarieme Uyi, et al. A comprehensive review of recent advances in the synthesis and application of metal-organic frameworks (MOFs) for the adsorptive sequestration of pollutants from wastewater[J]. Separation and Purification Technology, 2023, 311: 123246. |
| [64] | Dhiraj SUD, KAUR Gagandeep. A comprehensive review on synthetic approaches for metal-organic frameworks: From traditional solvothermal to greener protocols[J]. Polyhedron, 2021, 193: 114897. |
| [65] | KAZEMI Amir, PORDSARI Mahyar Ashourzadeh, TAMTAJI Mohsen, et al. Unveiling the power of defect engineering in MOF-808 to enhance efficient carbon dioxide adsorption and separation by harnessing the potential of DFT analysis[J]. Chemical Engineering Journal, 2024, 494: 153049. |
| [66] | YAGHI O M, LI Hailian. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
| [67] | LAHA Subhajit, CHAKRABORTY Anindita, MAJI Tapas Kumar. Synergistic role of microwave and perturbation toward synthesis of hierarchical porous MOFs with tunable porosity[J]. Inorganic Chemistry, 2020, 59(6): 3775-3782. |
| [68] | WU Haohan, GONG Qihan, OLSON David H, et al. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks[J]. Chemical Reviews, 2012, 112(2): 836-868. |
| [69] | STOCK Norbert, BISWAS Shyam. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chemical Reviews, 2012, 112(2): 933-969. |
| [70] | WANG Ji, LI Nan, XU Yuxia, et al. Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry[J]. Chemistry—A European Journal, 2020, 26(29): 6402-6422. |
| [71] | KHAN Nazmul Abedin, HAQUE Md Masuqul, JHUNG Sung Hwa. Accelerated syntheses of porous isostructural lanthanide- benzenetricarboxylates (Ln-BTC) under ultrasound at room temperature[J]. European Journal of Inorganic Chemistry, 2010, 2010(31): 4975-4981. |
| [72] | DANG Y THI, HOANG Hieu Trung, DONG Hieu Cao, et al. Microwave-assisted synthesis of nano Hf- and Zr-based metal-organic frameworks for enhancement of curcumin adsorption[J]. Microporous and Mesoporous Materials, 2020, 298: 110064. |
| [73] | LI Ying, WEN Guilin, LI Jianzhe, et al. Synthesis and shaping of metal-organic frameworks: A review[J]. Chemical Communications, 2022, 58(82): 11488-11506. |
| [74] | HABTEMARIAM Tesfaye Haile, RAJU V J T, CHEBUDE Yonas. Room temperature synthesis of pillared-layer metal-organic frameworks (MOFs)[J]. RSC Advances, 2022, 12(50): 32652-32658. |
| [75] | SU Honghao, HOU Jingwei, ZHU Junyong, et al. Room-temperature aqueous synthesis of MOF-808(Zr) for selective adsorption of dye mixtures[J]. Separation and Purification Technology, 2024, 333: 125957. |
| [76] | SHARANYAKANTH P S, RADHAKRISHNAN Mahendran. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review[J]. Trends in Food Science & Technology, 2020, 104: 102-116. |
| [77] | TAN Davin, Felipe GARCÍA. Main group mechanochemistry: From curiosity to established protocols[J]. Chemical Society Reviews, 2019, 48(8): 2274-2292. |
| [78] | Sylwia GŁOWNIAK, Barbara SZCZĘŚNIAK, CHOMA Jerzy, et al. Mechanochemistry: Toward green synthesis of metal-organic frameworks[J]. Materials Today, 2021, 46: 109-124. |
| [79] | 陈丹丹, 衣晓虹, 王崇臣. 机械化学法制备金属-有机骨架及其复合物研究进展[J]. 无机化学学报, 2020, 36(10): 1805-1821. |
| CHEN Dandan, YI Xiaohong, WANG Chongchen. Preparation of metal-organic frameworks and their composites using mechanochemical methods[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1805-1821. | |
| [80] | ZHANG Chenghui, CHEN Yongwei, WU Houxiao, et al. Mechanochemical synthesis of a robust cobalt-based metal-organic framework for adsorption separation methane from nitrogen[J]. Chemical Engineering Journal, 2022, 435: 133876. |
| [81] | ZHANG Ya, XU Ying, LI Ning, et al. An ultra-sensitive dual-signal ratio electrochemical aptasensor based on functionalized bimetallic MOF nano complexes by the in situ electrochemical synthesis for detect HER2[J]. International Journal of Hydrogen Energy, 2023, 48(63): 24548-24558. |
| [82] | ZHAN Fengping, ZHAO Yanan, DAI Xiaohui, et al. Electrochemically synthesized polyanine@Cu-BTC MOF as a bifunctional matrix for aptasensing of tetracycline in aquatic products[J]. Microchemical Journal, 2024, 196: 109512. |
| [83] | John J LOW, BENIN Annabelle I, JAKUBCZAK Paulina, et al. Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration[J]. Journal of the American Chemical Society, 2009, 131(43): 15834-15842. |
| [84] | HOWARTH Ashlee J, LIU Yangyang, LI Peng, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3): 15018. |
| [85] | KUNG Chung Wei, GOSWAMI Subhadip, Idan HOD, et al. Charge transport in zirconium-based metal-organic frameworks[J]. Accounts of Chemical Research, 2020, 53(6): 1187-1195. |
| [86] | DHAKA Sarita, KUMAR Rahul, DEEP Akash, et al. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments[J]. Coordination Chemistry Reviews, 2019, 380: 330-352. |
| [87] | GREATHOUSE Jeffery A, ALLENDORF Mark D. The interaction of water with MOF-5 simulated by molecular dynamics[J]. Journal of the American Chemical Society, 2006, 128(33): 10678-10679. |
| [88] | CHEN Peng, HE Xihong, PANG Maobin, et al. Iodine capture using Zr-based metal-organic frameworks (Zr-MOFs): Adsorption performance and mechanism[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20429-20439. |
| [89] | LONG Qinghua, WANG Yongqing, ZHAO Ruiming, et al. Precise manipulation of amino groups in Zr-MOFs for efficient adsorption performance[J]. Crystals, 2023, 13(6): 856. |
| [90] | WANG Rui, XU Haijuan, ZHANG Ke, et al. High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite[J]. Journal of Hazardous Materials, 2019, 364: 272-280. |
| [91] | BAI Zhiqiang, YUAN Liyong, ZHU Lin, et al. Introduction of amino groups into acid-resistant MOFs for enhanced U(Ⅵ) sorption[J]. Journal of Materials Chemistry A, 2015, 3(2): 525-534. |
| [92] | TABATABAII Maryam, KHAJEH Mostafa, OVEISI Ali Reza, et al. Poly(lauryl methacrylate)-grafted amino-functionalized zirconium-terephthalate metal-organic framework: Efficient adsorbent for extraction of polycyclic aromatic hydrocarbons from water samples[J]. ACS Omega, 2020, 5(21): 12202-12209. |
| [93] | LEE Gyudong, JHUNG Sung Hwa. Carbon dioxide capture using diaminoalkane-grafted MIL-101(Cr)s: Critical role of geometric configuration of loaded amines[J]. Separation and Purification Technology, 2024, 337: 126445. |
| [94] | SUN Tiancheng, HAO Sue, FAN Ruiqing, et al. Hydrophobicity-adjustable MOF constructs superhydrophobic MOF-rGO aerogel for efficient oil-water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56435-56444. |
| [95] | HARADA Yuki, HIJIKATA Yuh, KUSAKA Shinpei, et al. Creation of MOFs with open metal sites by partial replacement of metal ions with different coordination numbers[J]. Dalton Transactions, 2019, 48(8): 2545-2548. |
| [96] | LI Jianhui, LIU Puxu, CHEN Yang, et al. A customized hydrophobic porous shell for MOF-5[J]. Journal of the American Chemical Society, 2023, 145(36): 19707-19714. |
| [97] | DING Meili, JIANG Hailong. Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization[J]. CCS Chemistry, 2021, 3(8): 2740-2748. |
| [98] | PRAMANIK Bikram, SAHOO Rupam, Madhab C DAS. pH-stable MOFs: Design principles and applications[J]. Coordination Chemistry Reviews, 2023, 493: 215301. |
| [99] | Xiuliang LYU, FENG Liang, XIE Linhua, et al. Linker desymmetrization: Access to a series of rare-earth tetracarboxylate frameworks with eight-connected hexanuclear nodes[J]. Journal of the American Chemical Society, 2021, 143(7): 2784-2791. |
| [100] | HE Tao, HUANG Zhehao, YUAN Shuai, et al. Kinetically controlled reticular assembly of a chemically stable mesoporous Ni(Ⅱ)-pyrazolate metal-organic framework[J]. Journal of the American Chemical Society, 2020, 142(31): 13491-13499. |
| [101] | XIONG Yuxuan, LI Dandan, YU Jiehui, et al. Dye adsorption performance of an anionic Cd2+ MOF material based on semi-rigid hexacarboxylic acid[J]. CrystEngComm, 2024, 26(34): 4579-4591. |
| [102] | LEUS Karen, BOGAERTS Thomas, DE DECKER Jeroen, et al. Systematic study of the chemical and hydrothermal stability of selected “stable” Metal Organic Frameworks[J]. Microporous and Mesoporous Materials, 2016, 226: 110-116. |
| [103] | LIANG Weibin, CHEVREAU Hubert, RAGON Florence, et al. Tuning pore size in a zirconium-tricarboxylate metal-organic framework[J]. CrystEngComm, 2014, 16(29): 6530-6533. |
| [104] | UTHAPPA U T, AJEYA Kanalli V, SANNASI Veeman, et al. Green aluminum metal-organic frameworks (Al-MOFs) supported on commercial activated carbon for enhanced removal performances of industrial fluoride pollutants[J]. Journal of Water Process Engineering, 2024, 63: 105450. |
| [105] | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
| [106] | HUANG Lei, YANG Zhihui, ALHASSAN Sikpaam Issaka, et al. Highly efficient fluoride removal from water using 2D metal-organic frameworks MIL-53(Al) with rich Al and O adsorptive centers[J]. Environmental Science and Ecotechnology, 2021, 8: 100123. |
| [107] | SAMAL Amiya K, MISHRA Praveen K, BISWAS Arkoprovo. Assessment of origin and distribution of fluoride contamination in groundwater using an isotopic signature from a part of the Indo-Gangetic Plain (IGP), India[J]. HydroResearch, 2020, 3: 75-84. |
| [108] | SUN Xiangyun, KE Changping, LU Qifa, et al. Adsorption of fluoride ion on Al/La modified acidified attapulgite composite materials[J]. Separation and Purification Technology, 2025, 354: 128791. |
| [109] | XIE Yanhua, HUANG Jingqi, WANG Hongqian, et al. Simultaneous and efficient removal of fluoride and phosphate in phosphogypsum leachate by acid-modified sulfoaluminate cement[J]. Chemosphere, 2022, 305: 135422. |
| [110] | PAN Yubo, LI Linrui, YANG Baogang, et al. Adaptive structural modification of Zr-based MOF-808 via solvent and ligand engineering for enhanced fluoride ion adsorption efficiency[J]. Separation and Purification Technology, 2024, 348: 127731. |
| [111] | ZHU Xuehui, YANG Chengxiong, YAN Xiuping. Metal-organic framework-801 for efficient removal of fluoride from water[J]. Microporous and Mesoporous Materials, 2018, 259: 163-170. |
| [112] | TAN TONG ling, KRUSNAMURTHY Poovarasi A/P, NAKAJIMA Hideki, et al. Adsorptive, kinetics and regeneration studies of fluoride removal from water using zirconium-based metal organic frameworks[J]. RSC Advances, 2020, 10(32): 18740-18752. |
| [113] | SHI Guangqin, HE Ting, LI Haian, et al. Green synthesis and high-performance fluoride ion removal using lanthanum-modulated MOF-808(Zr)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 692: 133953. |
| [114] | WANG Zhe, GU Xinyue, ZHANG Xinbo, et al. New easily recycled carrier based polyurethane foam by loading Al-MOF and biochar for selective removal of fluoride ion from aqueous solutions[J]. Science of the Total Environment, 2023, 901: 166312. |
| [115] | QIU Yangbo, Yayue LYU, TANG Cong, et al. Sustainable recovery of high-saline papermaking wastewater: Optimized separation for salts and organics via membrane-hybrid process[J]. Desalination, 2021, 507: 114938. |
| [116] | SUN Wenjing, Hongxia LYU, MA Lei, et al. Use of catalytic wet air oxidation (CWAO) for pretreatment of high-salinity high-organic wastewater[J]. Journal of Environmental Sciences, 2022, 120: 105-114. |
| [117] | MA Wenbiao, DU Xiao, LIU Mimi, et al. A conductive chlorine ion-imprinted polymer threaded in metal-organic frameworks for electrochemically selective separation of chloride ions[J]. Chemical Engineering Journal, 2021, 412: 128576. |
| [118] | WANG Zhuo, YAN Tingting, SHI Liyi, et al. In situ expanding pores of dodecahedron-like carbon frameworks derived from MOFs for enhanced capacitive deionization[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15068-15078. |
| [119] | LIU Yunfei, QIN Yingjie, LI Qing, et al. A reversible absorption-based supported gas membrane process for enriching bromine from brine by using thin PTFE hollow fibers[J]. Journal of Membrane Science, 2017, 543: 222-232. |
| [120] | 高灿, 张慧芳, 刘海宁, 等. 溴、碘离子吸附研究进展[J]. 环境化学, 2014, 33(11): 1906-1911. |
| GAO Can, ZHANG Huifang, LIU Haining, et al. Research progress on the adsorption of bromide and iodide from aqueous solutions[J]. Environmental Chemistry, 2014, 33(11): 1906-1911. | |
| [121] | 李凌, 丁磊, 薛岗, 等. 不同亲疏水性腐殖酸对磁性离子交换树脂吸附去除水中溴离子的影响[J]. 过程工程学报, 2021, 21(7): 807-816. |
| LI Ling, DING Lei, XUE Gang, et al. Effects of hydrophilicity/hydrophobicity of humic acid components on the removal of bromide adsorbed on magnetic ion exchange resin[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 807-816. | |
| [122] | ZHANG Qi, CUI Yuanjing, QIAN Guodong. Goal-directed design of metal-organic frameworks for liquid-phase adsorption and separation[J]. Coordination Chemistry Reviews, 2019, 378: 310-332. |
| [123] | POURNARA Anastasia D, RAPTI Sofia, VALMAS Alexandros, et al. Alkylamino-terephthalate ligands stabilize 8-connected Zr4+ MOFs with highly efficient sorption for toxic Se species[J]. Journal of Materials Chemistry A, 2021, 9(6): 3379-3387. |
| [124] | JIANG Mengfang, ZHANG Xuefeng, DU Xiao, et al. An electrochemically induced dual-site adsorption composite film of Ni-MOF derivative/NiCo LDH for selective bromide-ion extraction[J]. Separation and Purification Technology, 2022, 283: 120175. |
| [125] | WANG Ting, ZHAO Huifang, ZHAO Xudong, et al. Silver nanoparticles prepared by one-step reaction via reducibility of a metal-organic framework to remove the toxic bromine ions[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 535-543. |
| [126] | WANG Xiaoxin, XU Dongmei, YU Dongsheng, et al. Fe-doped Zr-based metal-organic frameworks for efficient bromide ion capture: Adsorption performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111600. |
| [127] | ZHANG Xinran, MADDOCK John, NENOFF Tina M, et al. Adsorption of iodine in metal-organic framework materials[J]. Chemical Society Reviews, 2022, 51(8): 3243-3262. |
| [128] | YUAN Guowei, LU Yizhong, YANG Cheng. Effect of different synthesis methodologies on the adsorption of iodine[J]. Heliyon, 2023, 9(6): e16975. |
| [129] | Dóra BUZETZKY, NAGY Noémi M, József KÓNYA. Use of silver-bentonite in sorption of chloride and iodide ions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326(3): 1795-1804. |
| [130] | BENECKE Jannik, Alexander FUß, ENGESSER Tobias A, et al. A flexible and porous ferrocene-based gallium MOF with MIL-53 architecture[J]. European Journal of Inorganic Chemistry, 2021, 2021(8): 713-719. |
| [131] | MUNN Alexis S, MILLANGE Franck, FRIGOLI Michel, et al. Iodine sequestration by thiol-modified MIL-53(Al)[J]. CrystEngComm, 2016, 18(41): 8108-8114. |
| [132] | HU Yueqiao, LI Muqing, WANG Yanyan, et al. Direct observation of confined I-⋅⋅⋅I2⋅⋅⋅I- interactions in a metal-organic framework: Iodine capture and sensing[J]. Chemistry: A European Journal, 2017, 23(35): 8409-8413. |
| [133] | LIN Yunxiao, JIANG Xuanfeng, KIM Samuel T, et al. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water[J]. Journal of the American Chemical Society, 2017, 139(21): 7172-7175. |
| [134] | MAO Ping, QI Bingbing, LIU Ying, et al. AgⅡ doped MIL-101 and its adsorption of iodine with high speed in solution[J]. Journal of Solid State Chemistry, 2016, 237: 274-283. |
| [135] | XIONG Ye, ZHANG Ping, REN Weijie, et al. Rapid and selective removal of radioactive iodide ions from wastewater via bismuth-based metal-organic frameworks[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111906. |
| [136] | CHEN Jiuyu, GU Aotian, MIENSAH Elvis Djam, et al. Cu-Zn bimetal ZIFs derived nanowhisker zero-valent copper decorated ZnO nanocomposites induced oxygen activation for high-efficiency iodide elimination[J]. Journal of Hazardous Materials, 2021, 416: 126097. |
| [137] | LIN Kun-Yi Andrew, LIU Yuting, CHEN Shenyi. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies[J]. Journal of Colloid and Interface Science, 2016, 461: 79-87. |
| [138] | KE Fei, LUO Gang, CHEN Peirong, et al. Porous metal-organic frameworks adsorbents as a potential platform for defluoridation of water[J]. Journal of Porous Materials, 2016, 23(4): 1065-1073. |
| [139] | Ranwen OU, ZHANG Huacheng, WEI Jing, et al. Thermoresponsive amphoteric metal-organic frameworks for efficient and reversible adsorption of multiple salts from water[J]. Advanced Materials, 2018, 30(34): 1802767. |
| [140] | ZHANG Jing, FANG Jianhui, HAN Jinlong, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(31): 15245-15252. |
| [141] | WANG Ziming, XU Xingtao, KIM Jeonghun, et al. Nanoarchitectured metal-organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization[J]. Materials Horizons, 2019, 6(7): 1433-1437. |
| [142] | LI Zhe, MAO Shudi, YANG Ying, et al. Controllable synthesis of a hollow core-shell Co-Fe layered double hydroxide derived from Co-MOF and its application in capacitive deionization[J]. Journal of Colloid and Interface Science, 2021, 585: 85-94. |
| [143] | ZHANG Wei, SONG Xiaoyuan, LING Lixia, et al. Terminal-dependent ion recognition of BiOBr/PPy hybrid film with befitting absorption function for rapidly selective bromine ions removal[J]. Chemical Engineering Journal, 2023, 457: 141213. |
| [144] | ZHANG Xiaocui, WANG Xiaoxin, GAO Jun, et al. Preparation of Ag-Cu-MOF-74 and its bromine adsorption in simulated saline water[J]. Chemical Engineering and Processing Process Intensification, 2024, 204: 109949. |
| [145] | WANG Ting, ZHAO Huifang, ZHAO Xudong, et al. One-step preparation of Ag0-MOF composites for effective removal of iodide from water[J]. Journal of Solid State Chemistry, 2022, 305: 122680. |
| [146] | GONG Chunhui, LI Zhiying, CHEN Kaiwei, et al. Synthesis and characterization of Ag@Cu-based MOFs as efficient adsorbents for iodine anions removal from aqueous solutions[J]. Journal of Environmental Radioactivity, 2023, 265: 107211. |
| [1] | 梁书玮, 俞杰, 谢钟音, 裴鉴禄, 林中鑫, 陈泽翔. 共价有机框架吸附放射性气态碘的研究进展[J]. 化工进展, 2025, 44(7): 3965-3975. |
| [2] | 王沛淦, 李乐利, 谢颂专, 宋冰冰, 孔巧平, 刘改革, 麻微微, 施雪卿. 污泥基FeCa-ALE复合材料对磷酸盐的吸附机制[J]. 化工进展, 2025, 44(4): 2365-2373. |
| [3] | 张伊, 么秋香, 孙鸣. 天然斜发沸石基方沸石及其改性对Pb2+的吸附性能[J]. 化工进展, 2025, 44(3): 1726-1738. |
| [4] | 张炜, 黄赳, 朱晓芳, 李鹏. 凹凸棒石基钴钨水滑石吸附铅的性能及机理[J]. 化工进展, 2025, 44(1): 596-606. |
| [5] | 石磊, 王倩, 赵晓胜, 刘宏臣, 车远军, 段玉, 李庆. 油页岩灰基分子筛的制备及对亚甲基蓝的吸附[J]. 化工进展, 2024, 43(S1): 650-661. |
| [6] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
| [7] | 路广军, 韩晋钢, 陈英, 马志斌. 镁渣基多孔材料的制备及其对废水中Pb2+的吸附性能[J]. 化工进展, 2024, 43(4): 2126-2134. |
| [8] | 彭程, 徐漪琳, 石钰婧, 张玟, 李宇涛, 王皓冉, 张卫, 占绣萍. 生物炭改性及其对除草剂污染水体和土壤修复的研究进展[J]. 化工进展, 2024, 43(2): 1069-1081. |
| [9] | 单书月, 罗中秋, 周新涛, 尚波, 田鑫聪, 阎崔蓉. 钢渣构筑Fe-CSH吸附溶液中Pb(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)性能及机理[J]. 化工进展, 2024, 43(10): 5867-5880. |
| [10] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
| [11] | 郭宇, 佟民心, 吴红梅. 氨基功能化双醛淀粉吸附剂的制备及其对Pb(Ⅱ)的吸附行为[J]. 化工进展, 2023, 42(12): 6589-6599. |
| [12] | 王书燕, 张新波, 彭安萍, 刘阳, NGO HUU HAO, 郭文珊, 温海涛. 生物炭回收水中氮磷营养物质的研究进展与挑战[J]. 化工进展, 2023, 42(10): 5459-5469. |
| [13] | 陈勇, 程宁, 杨育兵, 卢凯玲, 罗应, 易慧. 氧化石墨烯插层膨润土复合材料高效吸附碱性紫3染料[J]. 化工进展, 2022, 41(6): 3324-3332. |
| [14] | 樊相汝, 羊依金, 郭旭晶, 张全碧. 软锰矿-含油污泥基活性炭对亚甲基蓝的吸附特性[J]. 化工进展, 2022, 41(12): 6664-6671. |
| [15] | 陈静, 沈艳琴, 姚一军, 胡成蒙, 武海良. 超吸水材料的研究进展[J]. 化工进展, 2022, 41(11): 5925-5935. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |