化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5925-5935.DOI: 10.16085/j.issn.1000-6613.2022-0085
陈静1(), 沈艳琴1,2(), 姚一军1,2,3, 胡成蒙1, 武海良1,2
收稿日期:
2022-01-12
修回日期:
2022-03-09
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
沈艳琴
作者简介:
陈静(1997—),女,硕士研究生,研究方向为功能性纺织材料。E-mail: cj15091752721@163.com。
基金资助:
CHEN Jing1(), SHEN Yanqin1,2(), YAO Yijun1,2,3, HU Chengmeng1, WU Hailiang1,2
Received:
2022-01-12
Revised:
2022-03-09
Online:
2022-11-25
Published:
2022-11-28
Contact:
SHEN Yanqin
摘要:
超吸水材料具有吸水倍数高、保水能力强、外观柔软、内部呈多孔网状结构等优点,但存在对含电解质水溶液吸收能力有限的问题。本文首先分析了超吸水材料的吸附机理,在此基础上着重介绍了超吸水树脂、超吸水纤维、超吸水膜、超吸水织物基气凝胶吸水材料的制备原理与特点,其次概述了不同形式吸水材料对去离子水、盐水、合成尿、尿素的吸附机理差异,指出增加吸水材料的比表面积、亲水基团数量、分子量,适当的交联度和中和度,并结合高的渗透压、静电排斥力、额外添加无机粒子可提高吸液能力,随后简述了高分子气凝胶与纺织品相结合构筑超吸水织物在安全防护领域的应用情况,最后对超吸水材料的可增长点进行了展望,以期为提高超吸水材料对含电解质水溶液的吸收能力提供理论参考和技术支持。
中图分类号:
陈静, 沈艳琴, 姚一军, 胡成蒙, 武海良. 超吸水材料的研究进展[J]. 化工进展, 2022, 41(11): 5925-5935.
CHEN Jing, SHEN Yanqin, YAO Yijun, HU Chengmeng, WU Hailiang. Research progress of superabsorbent polymer materials[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5925-5935.
种类 | 原料 | 引发方式 | 引发剂 | 交联剂 | 添加物 | 吸液倍率/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
合成类聚合物 | AA | 辐射引发(γ射线) | APS | MBA | — | 1815(水) | [ |
AA、AM | 氧化-还原引发 | APS-NaHSO3 | MBA | — | 1617(水),189(生理盐水) | [ | |
热引发(70℃) | APS | 蒙脱石 | 1024(水),56(生理盐水) | [ | |||
蛭石 | 1232(水),89 (生理盐水) | [ | |||||
AA-AM | 热引发(56℃) | H2O2 | MBA | Al2(SO4)3 | 60(生理盐水) | [ | |
AM | 氧化-还原引发 | KPS-NaHSO3 | MBA | — | 70(水) | [ | |
辐射引发 | — | 700(水) | [ | ||||
AMPS | 热引发(75℃) | APS | MBA | 氧化石墨烯 | 768(水),115(生理盐水) | [ | |
AA、AMPS | 辐射引发(γ射线) | APS | MBA | — | 4310(水),269(人造血) 288(合成尿) | [ | |
天然高分子 接枝-交联聚合物 | SA、AA | 辐射引发(60Co射线) | — | MBA | — | 579(水) | [ |
SS、AA | 热引发 | APS | MBA | — | 91~181(水),19(0.5%生理盐水) | [ | |
高岭土/蒙脱石 | 245(水),83(生理盐水) | [ | |||||
AA、AM、HA | 热引发(70℃) | KPS | MBA | — | 1002(水),183(生理盐水) | [ | |
AA、AM、CMC | 辐射引发(微波辐射) | KPS-NaHSO3 | MBA | — | 1520(水),165(生理盐水) | [ | |
天然高分子 交联聚合物 | CMC、甲壳素 | — | — | ECH | — | 1300(水),950(尿素溶液),350(生理盐水),355(合成尿) | [ |
CMCNa、HEC | — | — | DVS | — | 420(水),80.00(人工尿) | [ | |
CMCNa、HEC | — | — | WSC | — | 90(水) | [ | |
CMCNa、HEC | — | — | CA | — | 900(水) | [ |
表1 超吸水树脂的制备组分和吸液能力
种类 | 原料 | 引发方式 | 引发剂 | 交联剂 | 添加物 | 吸液倍率/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
合成类聚合物 | AA | 辐射引发(γ射线) | APS | MBA | — | 1815(水) | [ |
AA、AM | 氧化-还原引发 | APS-NaHSO3 | MBA | — | 1617(水),189(生理盐水) | [ | |
热引发(70℃) | APS | 蒙脱石 | 1024(水),56(生理盐水) | [ | |||
蛭石 | 1232(水),89 (生理盐水) | [ | |||||
AA-AM | 热引发(56℃) | H2O2 | MBA | Al2(SO4)3 | 60(生理盐水) | [ | |
AM | 氧化-还原引发 | KPS-NaHSO3 | MBA | — | 70(水) | [ | |
辐射引发 | — | 700(水) | [ | ||||
AMPS | 热引发(75℃) | APS | MBA | 氧化石墨烯 | 768(水),115(生理盐水) | [ | |
AA、AMPS | 辐射引发(γ射线) | APS | MBA | — | 4310(水),269(人造血) 288(合成尿) | [ | |
天然高分子 接枝-交联聚合物 | SA、AA | 辐射引发(60Co射线) | — | MBA | — | 579(水) | [ |
SS、AA | 热引发 | APS | MBA | — | 91~181(水),19(0.5%生理盐水) | [ | |
高岭土/蒙脱石 | 245(水),83(生理盐水) | [ | |||||
AA、AM、HA | 热引发(70℃) | KPS | MBA | — | 1002(水),183(生理盐水) | [ | |
AA、AM、CMC | 辐射引发(微波辐射) | KPS-NaHSO3 | MBA | — | 1520(水),165(生理盐水) | [ | |
天然高分子 交联聚合物 | CMC、甲壳素 | — | — | ECH | — | 1300(水),950(尿素溶液),350(生理盐水),355(合成尿) | [ |
CMCNa、HEC | — | — | DVS | — | 420(水),80.00(人工尿) | [ | |
CMCNa、HEC | — | — | WSC | — | 90(水) | [ | |
CMCNa、HEC | — | — | CA | — | 900(水) | [ |
1 | CHEN Jingying, WU Jing, RAFFA Patrizio, et al. Superabsorbent polymers: from long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives[J]. Progress in Polymer Science, 2022, 125: 101475. |
2 | RAONBY B G. Highly absorbing graft copolymerisate of starch and acrylonitrile: PCT/SE1984/000127[P]. 1984-04-09. |
3 | ZOHURIAAN-MEHR Mohammad J, KABIRI Kourosh. Superabsorbent polymer materials: a review[J]. Iranian Polymer Journal, 2008, 17(6): 451-476. |
4 | 叶枫, 谷雨, 韩斐, 等. 辐射接枝交联制备海藻酸钠系高吸水树脂[J]. 核技术, 2020, 43(12): 42-50. |
YE Feng, GU Yu, HAN Fei, et al. Preparation of sodium alginate-based super absorbent polymer by radiation grafting and crosslinking[J]. Nuclear Techniques, 2020, 43(12): 42-50. | |
5 | 马砺, 刘西西, 周莎莎, 等. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22): 22172-22177. |
MA Li, LIU Xixi, ZHOU Shasha, et al. Preparation and performance test of starch-based grafted sodium acrylate composite super absorbent resin material[J]. Materials Reports, 2021, 35(22): 22172-22177. | |
6 | 刘忠阳, 李艳梅, 贺龙强. 腐植酸型高吸水性树脂的制备及农业应用研究[J]. 化工新型材料, 2021, 49(1): 255-258. |
LIU Zhongyang, LI Yanmei, HE Longqiang. Study on synthesis and agricultural application of superabsorbent resin base on humic acid[J]. New Chemical Materials, 2021, 49(1): 255-258. | |
7 | 来水利, 高莹华, 罗娜娜. 单模聚焦微波辐射合成P(AA/AM)/有机蒙脱土高吸水性树脂的研究[J]. 中国塑料, 2012, 26(9): 32-36. |
LAI Shuili, GAO Yinghua, LUO Nana. Synthesis of P(AA-AM)/OMMT superabsorbent resin under signal-mode focusing microwave irradiation[J]. China Plastics, 2012, 26(9): 32-36. | |
8 | KAKONKE Grace, TESFAYE Tamrat, SITHOLE Bruce, et al. Production and characterization of cotton-chicken feather fibres blended absorbent fabrics[J]. Journal of Cleaner Production, 2020, 243: 118508. |
9 | 谢婉婷, 刘其海, 贾振宇, 等. 超吸水改性棉纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4): 48-54. |
XIE Wanting, LIU Qihai, JIA Zhenyu, et al. Preparation and performance of super absorbent modified cotton fiber membrane[J]. Journal of Textile Research, 2021, 42(4): 48-54. | |
10 | YU Zhicai, SURYAWANSHI Abhijeet, HE Hualing, et al. Preparation and characterisation of fire-resistant PNIPAAm/SA/AgNP thermosensitive network hydrogels and laminated cotton fabric used in firefighter protective clothing[J]. Cellulose, 2020, 27(9): 5391-5406. |
11 | BALDINO Lucia, ZUPPOLINI Simona, CARDEA Stefano, et al. Production of biodegradable superabsorbent aerogels using a supercritical CO2 assisted drying[J]. The Journal of Supercritical Fluids, 2020, 156: 104681. |
12 | 于志财, 刘金如, 何华玲, 等. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(9): 180-186. |
YU Zhicai, LIU Jinru, HE Hualing, et al. Research and application progress in fire retardant fabric based on polymeric hydrogel[J]. Journal of Textile Research, 2021, 42(9): 180-186. | |
13 | 王璐, 丁笑君, 夏馨, 等. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84. |
WANG Lu, DING Xiaojun, XIA Xin, et al. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric[J]. Journal of Textile Research, 2019, 40(10): 79-84. | |
14 | OMIDIAN H, ZOHURIAAN-MEHR M J, KABIRI K, et al. Polymer chemistry attractiveness: synthesis and swelling studies of gluttonous hydrogels in the advanced academic laboratory[J]. Journal of Polymer Materials, 2004, 21(3): 281-292. |
15 | 刘廷栋, 刘京. 高吸水性树脂的吸水机理[J]. 高分子通报, 1994(3): 181-185. |
LIU Tingdong, LIU Jing. Water absorbing mechanisms of high water absorbent resin[J]. Polymer Bulletin, 1994(3): 181-185. | |
16 | DEMITRI C, SCALERA F, MADAGHIELE M, et al. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture[J]. International Journal of Polymer Science, 2013, 2013: 435073. |
17 | TANG Hu, CHEN Han, DUAN Bo, et al. Swelling behaviors of superabsorbent chitin/carboxymethyl cellulose hydrogels[J]. Journal of Materials Science, 2014, 49(5): 2235-2242. |
18 | SANNINO A, MENSITIERI G, NICOLAIS L. Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field[J]. Journal of Applied Polymer Science, 2004, 91(6): 3791-3796. |
19 | DEMITRI Christian, DEL SOLE Roberta, SCALERA Francesca, et al. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid[J]. Journal of Applied Polymer Science, 2008, 110(4): 2453-2460. |
20 | 唐刚, 杜丽媛, 王浩, 等. γ射线辐射制备淀粉基高吸水性树脂[J]. 塑料工业, 2018, 46(2): 15-18. |
TANG Gang, DU Liyuan, WANG Hao, et al. Preparation of starch based superabsorbent resin by gamma ray radiation[J]. China Plastics Industry, 2018, 46(2): 15-18. | |
21 | JIANG Jiaqiao, ZHAO Shu. Acrylic superabsorbents: a meticulous investigation on copolymer composition and modification[J]. Iranian Polymer Journal, 2014, 23(5): 405-414. |
22 | GAO Jinzhang, WANG Aixiang, LI Yan, et al. Synthesis and characterization of superabsorbent composite by using glow discharge electrolysis plasma[J]. Reactive and Functional Polymers, 2008, 68(9): 1377-1383. |
23 | ZHENG Yian, LI Ping, ZHANG Junping, et al. Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites[J]. European Polymer Journal, 2007, 43(5): 1691-1698. |
24 | CHEN Zhenbin, LIU Mingzhu, MA Songmei. Synthesis and modification of salt-resistant superabsorbent polymers[J]. Reactive and Functional Polymers, 2005, 62(1): 85-92. |
25 | XIONG Boya, LOSS Rebeca Dettam, SHIELDS Derrick, et al. Polyacrylamide degradation and its implications in environmental systems[J]. Npj Clean Water, 2018, 1: 17. |
26 | Mohana RAJU K, Padmanabha RAJU M. Synthesis and swelling properties of superabsorbent copolymers[J]. Advances in Polymer Technology, 2001, 20(2): 146-154. |
27 | TANG Yaoji, GUAN Chengdong, LIU Yangwenyi, et al. Preparation and absorption studies of poly(acrylic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid)/graphene oxide superabsorbent composite[J]. Polymer Bulletin, 2019, 76(3): 1383-1399. |
28 | Ahmed AWADALLAH-F, MOSTAFA Tahia B. Synthesis and characterization studies of γ-radiation crosslinked poly(acrylic acid/2-acrylamido-2-methyl propane sulfonic acid) hydrogels[J]. Journal of Polymer Engineering, 2014, 34(5): 459-469. |
29 | 乔宇杭, 王桂萍, 钱石川, 等. 淀粉接枝丙烯酸高吸水树脂制备及性能[J]. 沈阳理工大学学报, 2019, 38(2): 70-74. |
QIAO Yuhang, WANG Guiping, QIAN Shichuan, et al. Preparation and properties of starch-graft-acrylic acid superabsorbent[J]. Journal of Shenyang Ligong University, 2019, 38(2): 70-74. | |
30 | FANG Shixin, WANG Guangjian, LI Pengcheng, et al. Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent[J]. International Journal of Biological Macromolecules, 2018, 115: 754-761. |
31 | WEI Peng, CHEN Weiwei, SONG Qinghua, et al. Superabsorbent hydrogels enhanced by quaternized tunicate cellulose nanocrystals with adjustable strength and swelling ratio[J]. Cellulose, 2021, 28(6): 3723-3732. |
32 | FEKETE Tamás, BORSA Judit, Erzsébet TAKÁCS, et al. Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking[J]. Cellulose, 2014, 21(6): 4157-4165. |
33 | NAKASON Charoen, WOHMANG Toha, KAESAMAN Azizon, et al. Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending[J]. Carbohydrate Polymers, 2010, 81(2): 348-357. |
34 | SHEN Jie, CUI Chang, LI Jian, et al. In situ synthesis of a silver-containing superabsorbent polymer via a greener method based on carboxymethyl celluloses[J]. Molecules 2018, 23(10): 2483. |
35 | 刘玉华, 魏宏亮, 李松茂, 等. 淀粉基水凝胶的研究进展[J]. 化工进展, 2021, 40(12): 6738-6751. |
LIU Yuhua, WEI Hongliang, LI Songmao, et al. Research progress of starch-based hydrogels[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6738-6751. | |
36 | Dipayan DAS, RENGASAMY R S, KUMAR Mritunjay. Liquid sorption behavior of superabsorbent fiber based nonwoven media[J]. Fibers and Polymers, 2013, 14(7): 1165-1171. |
37 | GUPTA Murari Lal, GUPTA Bhuvanesh, OPPERMANN Wilhelm, et al. Surface modification of polyacrylon itrile staple fibers via alkaline hydrolysis for superabsorbent applications[J]. Journal of Applied Polymer Science, 2004, 91(5): 3127-3133. |
38 | 章悦庭, 胡绍华. 高吸水性非织造布的研制[J]. 非织造布, 2000, 8(2): 29-31. |
ZHANG Yueting, HU Shaohua. Development of super absorbent nonwovens[J]. Nonwovens, 2000, 8(2): 29-31. | |
39 | 郝秀阳, 封严. 高吸水纤维的制备方法及应用[J]. 山东纺织科技, 2008, 49(3): 53-56. |
HAO Xiuyang, FENG Yan. The preparation methods and applications of super absorbent fiber[J]. Shandong Textile Science & Technology, 2008, 49(3): 53-56. | |
40 | 邓新华, 孙元, 边栋才, 等. PVA/PAA-AM共混高吸水纤维的微观结构与吸液能力[J]. 精细化工, 2005, 22(3): 177-180. |
DENG Xinhua, SUN Yuan, BIAN Dongcai, et al. Morphology and absorbency of PVA/PAA-AM blend superabsorbent fiber[J]. Fine Chemicals, 2005, 22(3): 177-180. | |
41 | LIU Mengzhu, WANG Yongpeng, CHENG Zhiqiang, et al. Electrospun carboxylic-functionalized poly(arylene ether ketone) ultrafine fibers[J]. High Performance Polymers, 2015, 27(8): 939-949. |
42 | DJAFARI PETROUDY Seyed Rahman, ARJMAND KAHAGH Sajad, VATANKHAH Elham. Env ironmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw[J]. Carbohydrate Polymers, 2021, 251: 117087. |
43 | 丁志荣. 超吸水纤维非织造材料结构与性能研究[D]. 上海: 东华大学, 2011. |
DING Zhirong. Structure and properties of nonwovens containing superabsorbent fiber[D]. Shanghai: Donghua University, 2011. | |
44 | 邵赛, 郑昌群, 邓钢桥, 等. 吸水膜的制备及性能研究[J]. 弹性体, 2004, 14(5): 55-57. |
SHAO Sai, ZHENG Changqun, DENG Gangqiao, et al. The preparation of absorbing water membrane and its performance[J]. China Elastomerics, 2004, 14(5): 55-57. | |
45 | PRIYA, SHARMA Amit Kumar, KAITH Balbir Singh, et al. Synthesis of dextrin-polyacrylamide and boric acid based tough and transparent, self-healing, superabsorbent film[J]. International Journal of Biological Macromolecules, 2021, 182: 712-721. |
46 | 王洪玲, 韩俊彪, 韩路路, 等. 一种壳聚糖/纳米纤维素复合膜的制备及性能研究[J]. 广东化工, 2021, 48(9): 50-51, 54. |
WANG Hongling, HAN Junbiao, HAN Lulu, et al. Preparation and properties of a nano-cellulose chitosan composite film[J]. Guangdong Chemical Industry, 2021, 48(9): 50-51, 54. | |
47 | KASSEM Ihsane, KASSAB Zineb, KHOULOUD Mehdi, et al. Phosphoric acid-mediated green preparation of regenerated cellulose spheres and their use for all-cellulose cross-linked superabsorbent hydrogels[J]. International Journal of Biological Macromolecules, 2020, 162: 136-149. |
48 | SALAM Abdus, PAWLAK Joel J, VENDITTI Richard A, et al. Synthesis and characterization of starch citrate-chitosan foam with superior water and saline absorbance properties[J]. Biomacromolecules, 2010, 11(6): 1453-1459. |
49 | LIU J, LI B, ZHU B, et al. Study on properties and aggregation structures of deacetylated konjac glucomannan/chitosan hydrochloride absorbent blend gel films[J]. Journal of Applied Polymer Science, 2010, 115(3): 1503-1509. |
50 | ABDEL BARY E M, FEKRI Ahmed, SOLIMAN Yaser A, et al. Novel superabsorbent membranes made of PVA and Ziziphus spina-christi cellulose for agricultural and horticultural applications[J]. New Journal of Chemistry, 2017, 41(18): 9688-9700. |
51 | WANG Xuejun, LOU Tao, ZHAO Wenhua, et al. Preparation of pure chitosan film using ternary solvents and its super absorbency[J]. Carbohydrate Polymers, 2016, 153: 253-257. |
52 | GONG Chen, SHI Yu, NI Jianping, et al. Investigation of porous structure of aerogel prepared from nanofibrillated cellulose[J]. Journal of Korea Technical Association of the Pulp and Paper Industry, 2016, 48(6): 17. |
53 | GORGIEVA Selestina, KOKOL Vanja. Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear[J]. Carbohydrate Polymers, 2011, 85(3): 664-673. |
54 | Eunjoo KO, KIM Hyungsup. Preparation of chitosan aerogel crosslinked in chemical and ionical ways by non-acid condition for wound dressing[J]. International Journal of Biological Macromolecules, 2020, 164: 2177-2185. |
55 | KAYA Mehmet. Super absorbent, light, and highly flame retardant cellulose-based aerogel crosslinked with citric acid[J]. Journal of Applied Polymer Science, 2017, 134(38): 45315. |
56 | CAPEZZA Antonio Jose, CUI Yuxiao, NUMATA Keiji, et al. High capacity functionalized protein superabsorbents from an agricultural co-product: a cradle-to-cradle approach[J]. Advanced Sustainable Systems, 2020, 4(9): 2000110. |
57 | CHANG Chunyu, DUAN Bo, CAI Jie, et al. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery[J]. European Polymer Journal, 2010, 46(1): 92-100. |
58 | ILLEPERUMA Widusha R K, ROTHEMUND Philipp, SUO Zhigang, et al. Fire-resistant hydrogel-fabric laminates: a simple concept that may save lives[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 2071-2077. |
59 | LI Bing, LI Dapeng, YANG Yanni, et al. Study of thermal-sensitive alginate-Ca2+/poly (N-isopropyla crylamide) hydrogels supported by cotton fabric for wound dressing applications[J]. Textile Research Journal, 2019, 89(5): 801-813. |
60 | WANG Ming, FENG Xiao, WANG Xijun, et al. Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal nanoparticles[J]. Journal of Materials Chemistry A, 2021, 9(43): 24539-24547. |
[1] | 陈勇, 程宁, 杨育兵, 卢凯玲, 罗应, 易慧. 氧化石墨烯插层膨润土复合材料高效吸附碱性紫3染料[J]. 化工进展, 2022, 41(6): 3324-3332. |
[2] | 樊相汝, 羊依金, 郭旭晶, 张全碧. 软锰矿-含油污泥基活性炭对亚甲基蓝的吸附特性[J]. 化工进展, 2022, 41(12): 6664-6671. |
[3] | 蒋博龙, 史顺杰, 蒋海林, 封鑫, 孙好芬. 金属有机框架材料吸附处理苯酚污水机理研究进展[J]. 化工进展, 2021, 40(8): 4525-4539. |
[4] | 刘钦, 周新涛, 黄静, 罗中秋, 邵周军, 王路星, 韦宇, 雒云龙. 赤泥吸附重金属离子性能及其机理研究进展[J]. 化工进展, 2021, 40(6): 3455-3465. |
[5] | 李孟, 李炜, 张帅, 李雨薇, 刘芳, 赵朝成, 王永强. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426. |
[6] | 肖永厚, 朱科润, 董晓莹, 贺高红. 燃油选择性吸附脱硫的多孔材料研究进展[J]. 化工进展, 2020, 39(6): 2241-2250. |
[7] | 崔婉莹, 艾恒雨, 张世豪, 魏金枝. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020, 39(10): 4210-4226. |
[8] | 钟黄亮, 王春霞, 周广林, 周红军. 基于纳米材料的静态吸附脱硫进展[J]. 化工进展, 2018, 37(07): 2655-2663. |
[9] | 王旺阳, 刘聪, 袁珮. 吸附法去除环境中多环芳烃的研究进展[J]. 化工进展, 2017, 36(01): 355-363. |
[10] | 沈秋莹1,罗利军1,王 娟2,刘拥军2,潘学军1,蒋峰芝2. 仿生吸附剂去除水中环境内分泌干扰物的研究进展[J]. 化工进展, 2012, 31(02 ): 428-434. |
[11] | 苏秀霞,赵钤妃,李仲谨,景 洁,支娟娟. 交联淀粉微球对对羟基苯甲醚的吸附行为及机理的探讨 [J]. 化工进展, 2011, 30(9): 1926-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |