化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5936-5945.DOI: 10.16085/j.issn.1000-6613.2022-0221
禹兴海1,2(), 唐海慰1,3, 李艳安1,3, 韩玉琦1,3, 闵雪梅1,3
收稿日期:
2022-02-11
修回日期:
2022-05-17
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
禹兴海
作者简介:
禹兴海(1978—),男,博士,教授,研究方向为高分子复合材料。E-mail:yuxinghai455@163.com。
基金资助:
YU Xinghai1,2(), TANG Haiwei1,3, LI Yan’an1,3, HAN Yuqi1,3, MIN Xuemei1,3
Received:
2022-02-11
Revised:
2022-05-17
Online:
2022-11-25
Published:
2022-11-28
Contact:
YU Xinghai
摘要:
利用农业固体废弃物玉米秸秆为前体,经700℃高温热解、KOH刻蚀后得到了具有三维孔道结构和大比表面积(2136.67m²/g)的生物炭(KBC)。以KBC为载体,利用乙醇溶解、真空浸渍的方式将有机相变材料硬脂酸(SA)注入其内部孔道中,获得了一种生物炭/硬脂酸(KBC/SA)复合相变材料。通过红外光谱(IR)、粉末X射线衍射(XRD)、扫描电镜(SEM)、热重分析(TG)、差示扫描量热分析(DSC)等表征手段,对其组成结构、微观形貌、储热性能以及稳定性进行了研究。结果表明,当SA质量分数为71.2%时,复合相变材料的储热性能最佳,其相变过程中的熔融焓和结晶焓分别为126.3J/g和128.7J/g,且经过100次循环储、放热性能测试后,相变焓值无明显变化。相变过程中无渗漏现象发生,表明KBC/SA是一种性能优异的定形相变材料。此外,KBC/SA复合相变材料具有良好的光热、电热转换能力,能够将太阳光能和电能转化为热能并储存和释放。当被模拟太阳光和直流电(U=5.0V)驱动后,其光热、电热转换效率可分别达到78.3%和70.1%。因此所制备的KBC/SA复合相变材料不仅能作为一种储热材料使用,而且在绿色清洁能源转化利用方面具有潜在价值。
中图分类号:
禹兴海, 唐海慰, 李艳安, 韩玉琦, 闵雪梅. 一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能[J]. 化工进展, 2022, 41(11): 5936-5945.
YU Xinghai, TANG Haiwei, LI Yan’an, HAN Yuqi, MIN Xuemei. Electro- and photo-driven phase change composites based on stearic acid-infiltrated biochar[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5936-5945.
项目 | BC | KBC-1 (1∶3) | KBC-2 (1∶4) | KBC-3 (1∶5) |
---|---|---|---|---|
比表面积/m²·g-1 | 3.64 | 1621.31 | 1680.21 | 2136.67 |
孔容/ cm³·g-1 | 0.003 | 0.91 | 0.96 | 1.35 |
孔径 /nm | 2.68 | 28.36 | 35.94 | 39.62 |
表 1 不同活化条件下制备的生物炭表面积及孔结构比较
项目 | BC | KBC-1 (1∶3) | KBC-2 (1∶4) | KBC-3 (1∶5) |
---|---|---|---|---|
比表面积/m²·g-1 | 3.64 | 1621.31 | 1680.21 | 2136.67 |
孔容/ cm³·g-1 | 0.003 | 0.91 | 0.96 | 1.35 |
孔径 /nm | 2.68 | 28.36 | 35.94 | 39.62 |
SA 质量分数/% | 熔融温度Tm/℃ | 熔融焓 ΔfH/J·g-1 | 结晶温度 Tc/℃ | 结晶焓 ΔcH/J·g-1 |
---|---|---|---|---|
纯SA | 58.9 | 175.6 | 48.5 | -177.8 |
25.9 | 54.8 | 33.4 | 44.5 | -34.2 |
46.0 | 56.7 | 81.9 | 44.8 | -85.8 |
58.7 | 56.7 | 88.0 | 50.0 | -89.6 |
71.2 | 55.1 | 126.3 | 44.6 | -128.7 |
表2 SA和KBC/SA复合相变材料的热性能数据
SA 质量分数/% | 熔融温度Tm/℃ | 熔融焓 ΔfH/J·g-1 | 结晶温度 Tc/℃ | 结晶焓 ΔcH/J·g-1 |
---|---|---|---|---|
纯SA | 58.9 | 175.6 | 48.5 | -177.8 |
25.9 | 54.8 | 33.4 | 44.5 | -34.2 |
46.0 | 56.7 | 81.9 | 44.8 | -85.8 |
58.7 | 56.7 | 88.0 | 50.0 | -89.6 |
71.2 | 55.1 | 126.3 | 44.6 | -128.7 |
BC/SA 循环次数 | 熔融温度Tm/℃ | 熔融焓 ΔfH/J·g-1 | 结晶温度 Tc/℃ | 结晶焓 ΔcH/J·g-1 |
---|---|---|---|---|
1 | 55.1 | 126.3 | 44.6 | -128.7 |
50 | 55.4 | 113.6 | 44.5 | -115.2 |
100 | 55.2 | 109.8 | 44.8 | -112.6 |
表3 KBC/SA复合相变材料循环前后的热性能数据
BC/SA 循环次数 | 熔融温度Tm/℃ | 熔融焓 ΔfH/J·g-1 | 结晶温度 Tc/℃ | 结晶焓 ΔcH/J·g-1 |
---|---|---|---|---|
1 | 55.1 | 126.3 | 44.6 | -128.7 |
50 | 55.4 | 113.6 | 44.5 | -115.2 |
100 | 55.2 | 109.8 | 44.8 | -112.6 |
1 | DA CUNHA Sandra Raquel Leite, DE AGUIAR José Luís Barroso. Phase change materials and energy efficiency of buildings: a review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083. |
2 | WU Wenhao, HUANG Xinyu, LI Kai, et al. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion[J]. Applied Energy, 2017, 190: 474-480. |
3 | 赵梦阳, 张宇昂, 唐炳涛. 聚氨酯型复合定形相变储能材料研究进展[J]. 精细化工, 2020, 37(11): 2182-2192, 2215. |
ZHAO Mengyang, ZHANG Yu’ang, TANG Bingtao. Research process in polyurethane form-stable composite phase change materials[J]. Fine Chemicals, 2020, 37(11): 2182-2192, 2215. | |
4 | 陈之帆, 孙志高, 汤小蒙, 等. 硬脂酸/十八醇/乙酸钠复合相变材料蓄/放热性能[J]. 化工进展, 2019, 38(4): 1833-1838. |
CHEN Zhifan, SUN Zhigao, TANG Xiaomeng, et al. Study on the charging and discharging characteristics of stearic acid/stearyl alcohol/sodium acetate composite phase change materials[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1833-1838. | |
5 | 陈琼霞, 熊德元, 王军正. 石蜡/介孔复合相变材料的制备及其热性能[J]. 精细化工, 2014, 31(2): 152-156. |
CHEN Qiongxia, XIONG Deyuan, WANG Junzheng. Preparation and thermal performance of paraffin/mesoporous composite phase change material[J]. Fine Chemicals, 2014, 31(2): 152-156. | |
6 | YU Dehai, HE Zhizhu. Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management[J]. Applied Energy, 2019, 247: 503-516. |
7 | 鄢冬茂, 蔡文蓉, 殷国强, 等. PEG/APS-SiO2/O-CNTs导热增强相变材料的制备及性能[J]. 精细化工, 2021, 38(4): 729-735. |
YAN Dongmao, CAI Wenrong, YIN Guoqiang, et al. Preparation and properties of PEG/APS-SiO2/O-CNTs phase change materials with enhanced thermal conductivity[J]. Fine Chemicals, 2021, 38(4): 729-735. | |
8 | 舒钊, 钟珂, 肖鑫, 等. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
SHU Zhao, ZHONG Ke, XIAO Xin, et al. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278. | |
9 | 何起帆, 吴闽强, 李廷贤, 等. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545. |
HE Qifan, WU Minqiang, LI Tingxian, et al. Preparation and thermophysical properties of octadecane/OBC/EG composite shaped phase change material[J]. CIESC Journal, 2021, 72(S1): 539-545. | |
10 | 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7): 674-683. |
ZHAI Tianyao, LI Tingxian, WU Si, et al. Preparation and thermal performance of form-stable expanded graphite/stearic acid composite phase change materials with high thermal conductivity[J]. Chinese Science Bulletin, 2018, 63(7): 674-683. | |
11 | 杨岳澔, 程晓敏, 李丹, 等. 硬脂酸/改性碳纳米管复合相变储热材料性能[J]. 储能科学与技术, 2019, 8(4): 759-763. |
YANG Yuehao, CHENG Xiaomin, LI Dan, et al. Properties of stearic acid/modified carbon nanotube composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(4): 759-763. | |
12 | 周建伟, 张引沁, 史磊, 等. 石蜡/MCM-41复合相变材料的结构及热性能[J]. 精细化工, 2011, 28(12): 1150-1153. |
ZHOU Jianwei, ZHANG Yinqin, SHI Lei, et al. Structure and thermal performance of paraffin/MCM-41 composite phase change material[J]. Fine Chemicals, 2011, 28(12): 1150-1153. | |
13 | 徐众, 侯静, 李军, 等. 膨胀石墨/有机质复合相变材料的制备及性能[J]. 化工进展, 2020, 39(7): 2758-2767. |
XU Zhong, HOU Jing, LI Jun, et al. Preparation and performances of expanded graphite/organic matter composite phase change materials[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2758-2767. | |
14 | FENG Yanhui, WEI Runzhi, HUANG Zhi, et al. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials[J]. Physical Chemistry Chemical Physics, 2018, 20(11): 7772-7780. |
15 | MENG Xin, ZHANG Huanzhi, SUN Lixian, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(1): 377-384. |
16 | FANG Xin, FAN Liwu, DING Qing, et al. Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets[J]. Energy & Fuels, 2013, 27(7): 4041-4047. |
17 | 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432. |
LI Xinghui, CHEN Minzhi, ZHOU Xiaoyan. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1422-1432. | |
18 | ZHANG Yuang, UMAIR Malik Muhammad, ZHANG Shufen, et al. Phase change materials for electron-triggered energy conversion and storage: a review[J]. Journal of Materials Chemistry A, 2019, 7(39): 22218-22228. |
19 | WORSLEY Marcus A, CHARNVANICHBORIKARN Supakit, MONTALVO Elizabeth, et al. Toward macroscale, isotropic carbons with graphene-sheet-like electrical and mechanical properties[J]. Advanced Functional Materials, 2014, 24(27): 4259-4264. |
20 | TANG Gongqing, JIANG Zhiguo, LI Xiaofeng, et al. Three dimensional graphene aerogels and their electrically conductive composites[J]. Carbon, 2014, 77: 592-599. |
21 | TAO Ying, XIE Xiaoying, Wei LYu, et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3: 2975. |
22 | YANG Jing, LI Xiaofeng, HAN Shuang, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. Journal of Materials Chemistry A, 2016, 4(46): 18067-18074. |
23 | KIM Hye Bin, KIM Jong Gook, KIM Taesun, et al. Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature[J]. Chemical Engineering Journal, 2021, 411: 128441. |
24 | Cuong NGUYEN X, T Thanh Huyen NGUYEN, NGUYEN T Hong Chuong, et al. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water[J]. Chemosphere, 2021, 282: 131009. |
25 | ZHANG Ying, CAO Bo, ZHAO Lulu, et al. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions[J]. Applied Surface Science, 2018, 427: 147-155. |
26 | ZHU Guocheng, LIN Jialin, YUAN Qian, et al. A biochar supported magnetic metal organic framework for the removal of trivalent antimony[J]. Chemosphere, 2021, 282: 131068. |
27 | MOHAMED Ibrahim, Rasha EL-MEIHY, Maha ALI, et al. Interactive effects of biochar and micronutrients on faba bean growth, symbiotic performance, and soil properties[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(5): 802. |
28 | TAN Bo, HUANG Zhaohui, YIN Zhaoyu, et al. Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato[J]. RSC Advances, 2016, 6(19): 15821-15830. |
29 | WAN Yechao, CHEN Yan, CUI Zhixing, et al. A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage[J]. Scientific Reports, 2019, 9(1): 11535. |
30 | ATINAFU Dimberu G, Seunghwan WI, YUN Beom Yeol, et al. Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage[J]. Energy, 2021, 216: 119294. |
31 | KARAIPEKLI Ali, Ahmet SAR, KAYGUSUZ Kamil. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007, 32(13): 2201-2210. |
32 | ZHANG Xialan, WANG Xin, ZHONG Changhe, et al. Ultrathin-wall mesoporous surface carbon foam stabilized stearic acid as a desirable phase change material for thermal energy storage[J]. Journal of Industrial and Engineering Chemistry, 2020, 85: 208-218. |
33 | LIANG Gengyuan, ZHANG Jianwei, AN Shaohang, et al. Phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management[J]. Carbon, 2021, 176: 11-20. |
34 | LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism[J]. Carbon, 2003, 41(2): 267-275. |
35 | WANG Wentao, UMAIR Malik Muhammad, QIU Jinjing, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites[J]. Energy Conversion and Management, 2019, 196: 1299-1305. |
36 | CHEN Liangjie, ZOU Ruqiang, XIA Wei, et al. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6(12): 10884-10892. |
37 | CHEN Liangjie, ZOU Ruqiang, XIA Wei, et al. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6(12): 10884-10892. |
38 | YANG Jie, TANG Lisheng, BAO Ruiying, et al. Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets[J]. Chemical Engineering Journal, 2017, 315: 481-490. |
39 | CAO Xiaoyin, WU Shujuan, YANG Lijuan, et al. Novel composite phase change materials based on hollow carbon nanospheres supporting fatty amines with high light-to-thermal transition efficiency[J]. Solar Energy Materials and Solar Cells, 2021, 225: 111035. |
40 | XU L, ZHAO Q H, LI Y S, et al. Nanodiamond-modified microencapsulated phase-change materials with superhydrophobicity and high light-to-thermal conversion efficiency[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21736-21744. |
41 | ZHANG Yuang, WANG Jiasheng, QIU Jinjing, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity[J]. Applied Energy, 2019, 237: 83-90. |
42 | LI Guangyong, ZHANG Xuetong, WANG Jin, et al. From anisotropic graphene aerogels to electron- and photo-driven phase change composites[J]. Journal of Materials Chemistry A, 2016, 4(43): 17042-17049. |
43 | Chen Liangjie, ZOU Ruqiang, XIA Wei, et al. Electro- and photo-driven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6, 10884-10892. |
44 | GUO Xinfeng, LIU Cui, LI Nian, et al. Electrothermal conversion phase change composites: the case of polyethylene glycol infiltrated graphene oxide/carbon nanotube networks[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15697-15702. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[3] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[4] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[5] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[6] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
[7] | 王玉, 余广炜, 林佳佳, 黎长江, 江汝清, 邢贞娇, 余铖. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
[8] | 胡兆岩, 张景新, 何义亮. Fe负载污泥生物炭催化热解聚丙烯及产物特性[J]. 化工进展, 2023, 42(2): 631-640. |
[9] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[10] | 王书燕, 张新波, 彭安萍, 刘阳, NGO HUU HAO, 郭文珊, 温海涛. 生物炭回收水中氮磷营养物质的研究进展与挑战[J]. 化工进展, 2023, 42(10): 5459-5469. |
[11] | 杨柳, 王名威, 张耀斌. 磁铁矿负载生物炭强化厌氧微生物处理2,4-二氯苯酚废水[J]. 化工进展, 2022, 41(9): 5065-5073. |
[12] | 黄霞, 何莹莹, 张艺蝶, 杨殿海, 戴晓虎, 谢丽. 基于生物炭强化有机固废好氧堆肥资源化的研究进展[J]. 化工进展, 2022, 41(8): 4544-4554. |
[13] | 陈茂, 张鑫, 谢伟, 陈广辉, 李志礼. 生物炭/凹凸棒土的制备及对磺胺嘧啶的吸附[J]. 化工进展, 2022, 41(5): 2623-2635. |
[14] | 罗明昀, 凌子夜, 方晓明, 张正国. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. |
[15] | 潘伟亮, 吴齐叶, 曹云鹏, 张先炳, 古励, 何强. nZVI/BC与(Cu-Pd)/BC协同提高硝酸盐的去除和氮气的选择性[J]. 化工进展, 2022, 41(2): 981-989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |