化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5912-5924.DOI: 10.16085/j.issn.1000-6613.2022-0131
收稿日期:
2022-01-20
修回日期:
2022-03-23
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
王彦玲
作者简介:
张传保(1994—),男,博士研究生,研究方向为提高采收率与采油化学。E-mail:B20020038@s.upc.edu.cn。
基金资助:
ZHANG Chuanbao(), WANG Yanling(), CHEN Mengxin, LIANG Shinan, SHI Wenjing
Received:
2022-01-20
Revised:
2022-03-23
Online:
2022-11-25
Published:
2022-11-28
Contact:
WANG Yanling
摘要:
随着油气资源的勘探开发不断向深层超深层储层发展,常规胍胶压裂液不能满足高温超高温储层压裂施工需求。国内外学者致力于从胍胶耐温改性与新型耐高温交联剂合成两个方向提升胍胶压裂液的耐温性能,同时研究了胍胶压裂液对储层的伤害机理,取得了较大进展。本文回顾了近年来国内外耐高温胍胶压裂液的发展动态,阐述了关于耐高温改性胍胶和耐高温交联剂合成的研究现状,从胍胶压裂液对储层的伤害类型和伤害机理角度进行了总结,重点分析了胍胶压裂液对高温储层伤害机理的研究进展。最后指出,应该继续通过化学改性进一步提高胍胶自身的耐温性能,同时加强对破胶剂和纳米交联剂的研究,并提出高效低伤害的纳米交联压裂液是耐高温胍胶压裂液未来可能的发展方向。
中图分类号:
张传保, 王彦玲, 陈孟鑫, 梁诗南, 史文静. 耐高温胍胶压裂液及其对储层的伤害机理研究进展[J]. 化工进展, 2022, 41(11): 5912-5924.
ZHANG Chuanbao, WANG Yanling, CHEN Mengxin, LIANG Shinan, SHI Wenjing. Research progress on high temperature resistant guar gum fracturing fluid and its damage mechanism to reservoirs[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5912-5924.
1 | MAITI S, KHILLAR P S, MISHRA D, et al. Physical and self-crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel[J]. Polymer Testing, 2021, 97: 107155. |
2 | HUANG Q M, LIU S M, WANG G, et al. Coalbed methane reservoir stimulation using guar-based fracturing fluid: a review[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 107-125. |
3 | 罗炎生, 方波, 卢拥军, 等. 耐高温压裂液研究进展[J]. 油田化学, 2018, 35(3): 545-549. |
LUO Yansheng, FANG Bo, LU Yongjun, et al. Research progress of high temperature fracturing fluid[J]. Oilfield Chemistry, 2018, 35(3): 545-549. | |
4 | 黄艺荣. 温敏瓜尔胶水凝胶的制备与性能研究[D]. 北京: 北京林业大学, 2020. |
HUANG Yirong. Study on preparation and performance of temperature sensitive guar hydrogel[D]. Beijing: Beijing Forestry University, 2020. | |
5 | ZHANG Z Y, MAO J C, YANG B, et al. Experimental evaluation of a novel modification of anionic guar gum with maleic anhydride for fracturing fluid[J]. Rheologica Acta, 2019, 58(3/4): 173-181. |
6 | 李然. 耐高温硅烷化瓜尔胶与醚化瓜尔胶压裂液体系研发及评价[D]. 成都: 西南石油大学, 2017. |
LI Ran. Development and evaluation of high-temperature silanization and etherification guar based fracturing fluids[D]. Chengdu: Southwest Petroleum University, 2017. | |
7 | ZHANG J, CHEN G. Improve the temperature resistance of guar gum by silanization[J]. Advanced Materials Research, 2011, 415/416/417: 652-655. |
8 | 潘一, 夏晨, 杨双春, 等. 耐高温水基压裂液研究进展[J]. 化工进展, 2019, 38(4): 1913-1920. |
PAN Yi, XIA Chen, YANG Shuangchun, et al. Research progress on high temperature water-based fracturing fluid[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1913-1920. | |
9 | 王彦玲, 张传保, 戎旭峰, 等. 压裂用纳米交联剂的研究进展[J]. 科学技术与工程, 2020, 20(3): 874-882. |
WANG Yanling, ZHANG Chuanbao, RONG Xufeng, et al. The progress in research of nano-crosslinking agent for fracturing[J]. Science Technology and Engineering, 2020, 20(3): 874-882. | |
10 | 曹彦超, 曲占庆, 许华儒, 等. 水基压裂液对储层液相伤害的实验研究[J]. 断块油气田, 2016, 23(5): 676-680. |
CAO Yanchao, QU Zhanqing, XU Huaru, et al. Experimental study on damage of water-based fracturing fluid to reservoir liquid phase[J]. Fault-Block Oil & Gas Field, 2016, 23(5): 676-680. | |
11 | CHEN F, WANG X G, YANG R S. Preparation of low molecular weight guar gum for fracturing by enzymatic degradation[J]. Advanced Materials Research, 2014, 971/972/973: 127-130. |
12 | 陈锋. 压裂用瓜尔胶的改性及性能研究[D]. 北京: 中国矿业大学(北京), 2015. |
CHEN Feng. Preparation and properties of modified guar for fracturing[D]. Beijing: China University of Mining & Technology, Beijing, 2015. | |
13 | GODEK E, GRZĄDKA E, MACIOŁEK U, et al. Influence of zwitterionic CAPB on flocculation of the aqueous cationic guar gum/glauconite suspensions at various pH[J]. International Journal of Molecular Sciences, 2021, 22(22): 12157. |
14 | 郭建春, 王世彬, 伍林. 超高温改性瓜胶压裂液性能研究与应用[J]. 油田化学, 2011, 28(2): 201-205. |
GUO Jianchun, WANG Shibin, WU Lin. Research and application of ultra-high temperature fracture fluids[J]. Oilfield Chemistry, 2011, 28(2): 201-205. | |
15 | QIU L W, SHEN Y D, WANG T, et al. Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum[J]. International Journal of Biological Macromolecules, 2018, 117: 974-982. |
16 | 孙孟莹, 潘一, 王瞳煜, 等. GTA-GG改性胍胶应用于压裂液及相关性能研究[J]. 应用化工, 2020, 49(8): 2004-2008. |
SUN Mengying, PAN Yi, WANG Tongyu, et al. Study on application of GTA-GG modified guanidine guar gum in fracturing fluid and related properties[J]. Applied Chemical Industry, 2020, 49(8): 2004-2008. | |
17 | 潘一, 徐明磊, 侯冰, 等. 温敏聚合物在油气开采中的研究进展[J]. 化工进展, 2021, 40(4): 2109-2119. |
PAN Yi, XU Minglei, HOU Bing, et al. Research progress of temperature-sensitive polymer in oil and gas production[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2109-2119. | |
18 | TANG H B, LI Y P, DONG S Q, et al. Etherification optimization for preparing partially hydrolized hydroxypropylated guar gum and its properties[J]. Journal of Applied Polymer Science, 2014, 131(13): 211-216. |
19 | 韦萍, 方波, 吴本芳, 等. 油酸酰胺丙基二甲基叔胺改性羟丙基胍胶耐高温压裂液的交联流变性能[J]. 油田化学, 2020, 37(4): 642-648. |
WEI Ping, FANG Bo, WU Benfang, et al. Cross-linking rheological properties of oleic acid amidopropyl dimethyl tertiary amine modified hydroxypropyl guar gum fracturing fluid[J]. Oilfield Chemistry, 2020, 37(4): 642-648. | |
20 | 靳剑霞, 谭锐, 王红科, 等. 新型改性羟丙基瓜胶及其在超高温压裂液中的应用[J]. 钻井液与完井液, 2018, 35(2): 126-130. |
JIN Jianxia, TAN Rui, WANG Hongke, et al. Application of a new modified HPG in ultra-high temperature fracturing fluid[J]. Drilling and Completion Fluids, 2018, 35(2): 126-130. | |
21 | 刘通义, 唐瑭, 陈光杰, 等. 一种压裂液用疏水阳离子改性瓜胶的制备与评价[J]. 钻井液与完井液, 2018, 35(1): 114-118. |
LIU Tongyi, TANG Tang, CHEN Guangjie, et al. Preparation and evaluation of hydrophobic cationic guar gum for fracturing fluid[J]. Drilling and Completion Fluids, 2018, 35(1): 114-118. | |
22 | 王晨. 磺酸基羟丙基胍胶疏水化分子设计、缔合作用及凝胶性能研究[D]. 西安: 陕西科技大学, 2016. |
WANG Chen. Hydrophobization molecular designs, associative behaviors and gel performances of sulfo-hydroxypropyl guar GUM[D]. Xi’an: Shaanxi University of Science & Technology, 2016. | |
23 | WANG C, YANG T, WANG T, et al. Thermosensitive behavior of hydrophobically associating anionic guar gum solutions and gels[J]. International Journal of Biological Macromolecules, 2018, 111: 169-177. |
24 | 徐占东, 代延伟, 李丽书. JK-1002高温羧甲基胍胶压裂液的性能评价及在吉林油田的应用[J]. 长江大学学报(自然科学版), 2016, 13(8): 64-69, 6. |
XU Zhandong, DAI Yanwei, LI Lishu. Performance evaluation on JK-1002 high temperature carboxymethyl gum fracturing fluid and its application in Jilin oilfield[J]. Journal of Changjiang University (Natural Science Edition), 2016, 13(8): 64-69, 6. | |
25 | 赵福麟. 油田化学[M]. 东营: 中国石油大学出版社, 2007. |
ZHAO Fulin. Oilfield Chemistry[M]. Dongying: China University of Petroleum Press, 2007. | |
26 | 魏忠强. 有机钛交联剂的制备及其在改性魔芋胶压裂液中的应用[D]. 西安: 陕西科技大学, 2014. |
WEI Zhongqiang. Preparation of organic titanium crosslinker and its application in modified konjac glucomannan fracturing system[D]. Xi’an: Shaanxi University of Science & Technology, 2014. | |
27 | 马悦, 李小瑞, 杨晓武, 等. 酸性有机钛交联剂的合成及在压裂液中的应用[J]. 精细化工, 2014, 31(6): 765-769. |
MA Yue, LI Xiaorui, YANG Xiaowu, et al. Synthesis and application of acidic organic titanium cross-linking agent for fracturing fluid[J]. Fine Chemicals, 2014, 31(6): 765-769. | |
28 | 马悦. 有机钛/AM/AA/DEAM三元共聚物压裂液体系制备及应用研究[D]. 西安: 陕西科技大学, 2015. |
MA Yue. Study on the application and preparation of organic titanium/AM/AA/DEAM three copolymer fracturing fluid system[D]. Xi’an: Shaanxi University of Science & Technology, 2015. | |
29 | 江万雄. 压裂用有机锆交联剂的制备及性能评价[D]. 成都: 西南石油大学, 2016. |
JIANG Wanxiong. Preparation and performance evaluation of organic zirconium crosslinking agent for fracturing[D]. Chengdu: Southwest Petroleum University, 2016. | |
30 | 严芳芳. 有机锆交联聚合物和羟丙基瓜胶压裂液及流变动力学研究[D]. 上海: 华东理工大学, 2014. |
YAN Fangfang. Study on organic zirconium crosslinked polymer and hydroxypropyl guar fracturing fluids and their rheokinetics[D]. Shanghai: East China University of Science and Technology, 2014. | |
31 | 张楷雨, 侯吉瑞, 李卓静. 酸性压裂液用有机锆交联剂的合成与性能评价[J]. 油田化学, 2021, 38(1): 34-41. |
ZHANG Kaiyu, HOU Jirui, LI Zhuojing. Synthesis and evaluation of organic zirconium cross-linker used in acidic fracturing fluid[J]. Oilfield Chemistry, 2021, 38(1): 34-41. | |
32 | 张玉广, 张浩, 王贤君, 等. 新型超高温压裂液的流变性能[J]. 中国石油大学学报(自然科学版), 2012, 36(1): 165-169. |
ZHANG Yuguang, ZHANG Hao, WANG Xianjun, et al. Rheological behaviors of a novel ultra-high temperature fracturing fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(1): 165-169. | |
33 | SOKHANVARIAN K, NASR-EL-DIN H A, HARPER T L. Effect of ligand type attached to zirconium-based crosslinkers and the effect of a new dual crosslinker on the properties of crosslinked carboxymethylhydroxypropylguar[J]. SPE Journal, 2019, 24(4): 1741-1756. |
34 | 史群妮. 一种压裂用抗高温交联剂的研究[D]. 成都: 西南石油大学, 2017. |
SHI Qunni. Research on a high temperature resistant crosslinking agent for fracturing[D]. Chengdu: Southwest Petroleum University, 2017. | |
35 | 李小凡, 刘贺, 江安, 等. 超高温有机硼交联剂的研究与应用[J]. 油田化学, 2012, 29(1): 80-82, 115. |
LI Xiaofan, LIU He, JIANG An, et al. Research and application of ultra-high temperature organic borate crosslinker[J]. Oilfield Chemistry, 2012, 29(1): 80-82, 115. | |
36 | 张林, 沈一丁, 隋明炜, 等. 低浓度胍胶压裂液有机硼交联剂YJ-P的合成与应用[J]. 精细化工, 2013, 30(1): 104-107. |
ZHANG Lin, SHEN Yiding, SUI Mingwei, et al. Synthesis and application of organic boron crosslinker YJ-P for low-concentration guanidine gum fracturing fluids[J]. Fine Chemicals, 2013, 30(1): 104-107. | |
37 | 罗攀登, 张俊江, 鄢宇杰, 等. 耐高温低浓度瓜胶压裂液研究与应用[J]. 钻井液与完井液, 2015, 32(5): 86-88, 107. |
LUO Pandeng, ZHANG Junjiang, YAN Yujie, et al. Study and application of high temperature low concentration guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(5): 86-88, 107. | |
38 | 张大年, 赵崇镇, 范凌霄, 等. 海水基植物胶压裂液体系快速制备及性能评价[J]. 中国海上油气, 2016, 28(6): 95-98. |
ZHANG Danian, ZHAO Chongzhen, FAN Lingxiao, et al. Rapid preparation and performance evaluation of a seawater-based vegetable gum fracturing liquid[J]. China Offshore Oil and Gas, 2016, 28(6): 95-98. | |
39 | 李海华. 耐高温瓜尔胶压裂液交联剂的合成及压裂液性能研究[D]. 武汉: 武汉理工大学, 2014. |
LI Haihua. Synthesis of crosslinker for high-temperature guar based fracturing fluid and characterization of hydraulic fracturing fluid[D]. Wuhan: Wuhan University of Technology, 2014. | |
40 | 刘通义, 史群妮, 陈光杰, 等. 一种抗高温的有机硼交联剂的研究及应用[J]. 现代化工, 2016, 36(10): 96-99. |
LIU Tongyi, SHI Qunni, CHEN Guangjie, et al. Research and application of an organic boron crosslinker with high temperature resistance[J]. Modern Chemical Industry, 2016, 36(10): 96-99. | |
41 | 崔佳, 张汝生, 赵梦云, 等. 新型压裂液用有机硼交联剂的合成、表征与性能评价[J]. 应用化工, 2017, 46(6): 1055-1057, 1061. |
CUI Jia, ZHANG Rusheng, ZHAO Mengyun, et al. Synthesis, characterization and performance evaluation of organic borate cross linker in the new fracturing fluid[J]. Applied Chemical Industry, 2017, 46(6): 1055-1057, 1061. | |
42 | 韩玉婷. 有机硼锆交联剂的制备及其在抗高温压裂液体系中的应用[D]. 成都: 西南石油大学, 2014. |
HAN Yuting. Preparation of organoboron-zirconium crosslinking agent and its application in high temperature fracturing fluid system[D]. Chengdu: Southwest Petroleum University, 2014. | |
43 | XIAO Bo, ZHANG Shicheng, GUO Tiankui, et al. Experimental investigation and performance evaluation of a novel high temperature tolerant seawater-based fracturing fluid[J]. Water Resources Management, 2014, 28(10): 2767-2779. |
44 | 王松. 有机硼锆交联聚多糖凝胶的制备及流变性能研究[D]. 武汉: 武汉理工大学, 2014. |
WANG Song. Preparation and rheological study of organic boron-zirconium-crosslinked polysaccharide gels[D]. Wuhan: Wuhan University of Technology, 2014. | |
45 | 沈丽, 黄文章, 向林, 等. 超高耐温型胍胶交联剂的合成与性能研究[J]. 石油与天然气化工, 2017, 46(2): 80-84. |
SHEN Li, HUANG Wenzhang, XIANG Lin, et al. Synthesis and properties of ultra high temperature resistant guanidine cross-linking agent[J]. Chemical Engineering of Oil & Gas, 2017, 46(2): 80-84. | |
46 | 胡世平, 李建平, 韩俊华, 等. 有机硼锆交联剂的制备与延缓交联效果[J]. 油田化学, 2016, 33(1): 37-39, 62. |
HU Shiping, LI Jianping, HAN Junhua, et al. Preparation of organic boron-zirconium crosslinker and the effect of retarding crosslinking[J]. Oilfield Chemistry, 2016, 33(1): 37-39, 62. | |
47 | 刘通义, 唐文越, 陈光杰, 等. 纳米交联剂BC-27的制备及性能[J]. 精细化工, 2018, 35(4): 683-688. |
LIU Tongyi, TANG Wenyue, CHEN Guangjie, et al. Preparation and properties of nano-crosslinker BC-27[J]. Fine Chemicals, 2018, 35(4): 683-688. | |
48 | 王坤. 压裂用纳米交联剂制备及交联性能研究[D]. 东营: 中国石油大学(华东), 2018. |
WANG Kun. Synthesis and properties evaluation of nano crosslinker for hydraulic fracturing[D]. Dongying: China University of Petroleum (Huadong), 2018. | |
49 | LAFITTE V, TUSTIN G, DROCHON B, et al. Nanomaterials in fracturing applications[C]//All Days. June 12-14, 2012. Noordwijk, The Netherlands. SPE, 2012. |
50 | 周珺, 贾文峰, 蒋廷学, 等. 耐高温超低浓度纳米胍胶压裂液性能评价研究[J]. 现代化工, 2017, 37(5): 59-61, 63. |
ZHOU Jun, JIA Wenfeng, JIANG Tingxue, et al. Performance evaluation of high temperature ultra-low concentration nanometer HPC fracturing fluid[J]. Modern Chemical Industry, 2017, 37(5): 59-61, 63. | |
51 | WANG Kun, WANG Yanling, REN Jinheng, et al. Highly efficient nano boron crosslinker for low-polymer loading fracturing fluid system[C]//Day 1 Tue, October 17, 2017. October 17-19, 2017. Jakarta, Indonesia. SPE, 2017. |
52 | 章子锋. 胍胶压裂液高效纳米交联剂的制备及其性能研究[D]. 开封: 河南大学, 2017. |
ZHANG Zifeng. Preparation of a highly efficient nano crosslinker and study of its properties on guar gum fracturing fluid[D]. Kaifeng: Henan University, 2017. | |
53 | WANG Yanling, ZHANG Chuanbao, XU Ning, et al. Synthesis and properties of organoboron functionalized nanocellulose for crosslinking low polymer fracturing fluid system[J]. RSC Advances, 2021, 11(22): 13466-13474. |
54 | LIU Jiawen, WANG Shibin, WANG Chuan, et al. Influence of nanomaterial morphology of guar-gum fracturing fluid, physical and mechanical properties[J]. Carbohydrate Polymers, 2020, 234: 115915. |
55 | 董沅武. 低渗透砂岩油藏增产过程中储层损害的微观机理研究[D]. 荆州: 长江大学, 2021. |
DONG Yuanwu. Study on micro-mechanism of reservoir damage during stimulation of low permeability sandstone reservoir[D]. Jingzhou: Yangtze University, 2021. | |
56 | KREIPL M P, KREIPL A T. Hydraulic fracturing fluids and their environmental impact: then, today, and tomorrow[J]. Environmental Earth Sciences, 2017, 76(4): 1-16. |
57 | 张然. 裂缝性致密油储层压裂裂缝扩展与支撑机理研究[D]. 北京: 中国石油大学(北京), 2017. |
ZHANG Ran. Fractures propagation and propping mechanism in fractured tight oil reservoir[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
58 | 许冬进, 张滨海, 李紫晗, 等. 致密气压裂液与储层全过程渗吸伤害规律研究[J]. 长江大学学报(自然科学版), 2022, 19(1): 79-85. |
XU Dongjin, ZHANG Binhai, LI Zihan, et al. Study on the law of imbibition damage in the whole process of tight gas fracturing fluid and reservoir[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(1): 79-85. | |
59 | 张博, 张海勇, 吴小张, 等. 特低渗油田水力压裂的压裂液伤害实验研究[J]. 重庆科技学院学报(自然科学版), 2016, 18(2): 82-86. |
ZHANG Bo, ZHANG Haiyong, WU Xiaozhang, et al. Study on the hydraulic fracturing fluid damage test of extra-low permeability reservoir[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2016, 18(2): 82-86. | |
60 | TANG Hongming, TANG Haoxuan, HE Jiang, et al. Damage mechanism of water-based fracturing fluid to tight sandstone gas reservoirs: improvement of the evaluation measurement for properties of water-based fracturing fluid: SY/T 5107—2016[J]. Natural Gas Industry B, 2021, 8(2): 163-172. |
61 | 许诗婧. 致密砂岩油藏增产过程中储层伤害机理[J]. 科学技术与工程, 2019, 19(23): 92-99. |
XU Shijing. Reservoir damage mechanism during stimulation of tight sandstone reservoir[J]. Science Technology and Engineering, 2019, 19(23): 92-99. | |
62 | 曹彦超, 曲占庆, 郭天魁, 等. 水基压裂液的储层伤害机理实验研究[J]. 西安石油大学学报(自然科学版), 2016, 31(2): 87-92, 98. |
CAO Yanchao, QU Zhanqing, GUO Tiankui, et al. Experimental study on damage mechanism of water-based fracturing fluid to reservoir[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2016, 31(2): 87-92, 98. | |
63 | 段明, 陶俊, 方申文, 等. pH值对原油乳状液稳定性的影响[J]. 化工进展, 2015, 34(7): 1853-1857. |
DUAN Ming, TAO Jun, FANG Shenwen, et al. Effect of pH on the stability of crude oil emulsions[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1853-1857. | |
64 | 杨晓武, 李志刚, 王晨. 羟丙基胍胶在海水中的溶解及流变性能研究[J]. 陕西科技大学学报, 2020, 38(3): 76-80. |
YANG Xiaowu, LI Zhigang, WANG Chen. Study on the dissolution process and rheological properties of hydroxypropyl guar gum in seawater[J]. Journal of Shaanxi University of Science & Technology, 2020, 38(3): 76-80. | |
65 | PARVATHY K S, SUSHEELAMMA N S, THARANATHAN R N. Hydration characteristics of guar gum samples and their fractions[J]. Food Hydrocolloids, 2007, 21(4): 630-637. |
66 | 王明磊, 张遂安, 关辉, 等. 致密油储层特点与压裂液伤害的关系——以鄂尔多斯盆地三叠系延长组长7段为例[J]. 石油与天然气地质, 2015, 36(5): 848-854. |
WANG Minglei, ZHANG Sui’an, GUAN Hui, et al. Relationship between characteristics of tight oil reservoirs and fracturing fluid damage: a case from Chang 7 Member of the Triassic Yanchang Fm in Ordos Basin[J]. Oil & Gas Geology, 2015, 36(5): 848-854. | |
67 | 肖丹凤, 王友启, 马志权, 等. 改性瓜尔胶压裂液对储层伤害的实验研究[J]. 采油工程, 2014(1): 19-23. |
XIAO Danfeng, WANG Youqi, MA Zhiquan, et al. Experimental study on reservoir damage caused by modified guar gum fracturing fluid[J]. Oil Production Engineering, 2014(1): 19-23. | |
68 | 刘彧轩. 裂缝性致密砂岩气藏压裂液滤失特征与模型研究[D]. 成都: 西南石油大学, 2015. |
LIU Yuxuan. Investigation of leakoff characteristic and model for fractured tight gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2015. | |
69 | BAHRAMI H, REZAEE R, OSTOJIC J, et al. Evaluation of damage mechanisms and skin factor in tight gas reservoirs[C]//All Days. June 7-10, 2011. Noordwijk, The Netherlands. SPE, 2011. |
70 | BAZIN B, BEKRI S, VIZIKA O, et al. Fracturing in tight gas reservoirs: application of special-core-analysis methods to investigate formation-damage mechanisms[J]. SPE Journal, 2010, 15(4): 969-976. |
71 | 光新军, 王敏生, 韩福伟, 等. 压裂支撑剂新进展与发展方向[J]. 钻井液与完井液, 2019, 36(5): 529-533, 541. |
GUANG Xinjun, WANG Minsheng, HAN Fuwei, et al. Proppants for fracturing fluids: new progress made and direction of future development[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 529-533, 541. | |
72 | PALISCH T, DUENCKEL R, WILSON B. New technology yields ultrahigh-strength proppant[J]. SPE Production & Operations, 2015, 30(1): 76-81. |
73 | JACKSON K, OREKHA O. Low density proppant in slickwater applications improves reservoir contact and fracture complexity—A Permian Basin case history[C]//Day 2 Thu, September 14, 2017. September 13-14, 2017. Midland, Texas, USA. SPE, 2017. |
74 | RADWAN A. A multifunctional coated proppant: a review of over 30 field trials in low permeability formations[C]//Day 2 Tue, October 10, 2017. October 9-11, 2017. San Antonio, Texas, USA. SPE, 2017. |
75 | GREEN J, DEWENDT A, TERRACINA J, et al. First proppant designed to decrease water production[C]//Day 3 Wed, September 26, 2018. September 24-26, 2018. Dallas, Texas, USA. SPE, 2018. |
76 | ARSHADI M, ZOLFAGHARI A, PIRI M, et al. The effect of deformation on two-phase flow through proppant-packed fractured shale samples: a micro-scale experimental investigation[J]. Advances in Water Resources, 2017, 105: 108-131. |
77 | 徐林静, 张士诚, 马新仿. 胍胶压裂液对储集层渗透率的伤害特征[J]. 新疆石油地质, 2016, 37(4): 456-459. |
XU Linjing, ZHANG Shicheng, MA Xinfang. Characteristics of damage of guar fracturing fluid to reservoir permeability[J]. Xinjiang Petroleum Geology, 2016, 37(4): 456-459. | |
78 | 吴磊, 崔伟香, 晏军, 等. 低温低伤害瓜胶压裂液破胶技术研究[J]. 应用化工, 2019, 48(4): 834-837. |
WU Lei, CUI Weixiang, YAN Jun, et al. Research of gel breaking technology for low damage gum fracturing fluid at low temperature[J]. Applied Chemical Industry, 2019, 48(4): 834-837. | |
79 | 刘平礼, 张璐, 邢希金, 等. 瓜胶压裂液对储层的伤害特性[J]. 油田化学, 2014, 31(3): 334-338. |
LIU Pingli, ZHANG Lu, XING Xijin, et al. Characteristics of formation damage by guar-gum fracturing fluids[J]. Oilfield Chemistry, 2014, 31(3): 334-338. | |
80 | WANG Jie, HUANG Yixiao, ZHANG Yan, et al. Study of fracturing fluid on gel breaking performance and damage to fracture conductivity[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107443. |
81 | XU Zhichao, LI Zhiping, WANG Cai, et al. Experimental study on microscopic formation damage of low permeability reservoir caused by HPG fracturing fluid[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 486-495. |
82 | 李太伟, 周继东, 金智荣, 等. 压裂液对储层伤害的核磁共振技术评价方法[J]. 重庆科技学院学报(自然科学版), 2014, 16(6): 62-65. |
LI Taiwei, ZHOU Jidong, JIN Zhirong, et al. Application of NMR technique in the evaluation of fracturing fluid damage[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2014, 16(6): 62-65. | |
83 | 尹子辰, 王彦玲, 张传保. 羟丙基胍胶在高岭土上的吸附性质研究[J]. 分析化学, 2019, 47(1): 93-98. |
YIN Zichen, WANG Yanling, ZHANG Chuanbao. Study of adsorption behavior of hydroxypropyl guar gum on Kaolin[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 93-98. | |
84 | LI Yang, WANG Shibin, GUO Jianchun, et al. Reducing adsorption of hydroxypropyl guar gum on sandstone by silicon nanoparticles[J]. Carbohydrate Polymers, 2019, 219: 21-28. |
85 | 郭建春, 李杨, 王世彬. 氢键抑制方法减少瓜尔胶压裂液对砂岩储层的吸附伤害[J]. 天然气工业, 2019, 39(7): 57-62. |
GUO Jianchun, LI Yang, WANG Shibin. Hydrogen bond inhibition method: reducing the adsorption damage of guar fracturing fluid to sandstone reservoirs[J]. Natural Gas Industry, 2019, 39(7): 57-62. |
[1] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[2] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[3] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[4] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[6] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[7] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[8] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[9] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[10] | 葛伟童, 廖亚龙, 李明原, 嵇广雄, 郗家俊. Pd-Fe/MWCNTs双金属催化剂制备及其脱氯动力学[J]. 化工进展, 2023, 42(4): 1885-1894. |
[11] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[12] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
[13] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
[14] | 郭帅帅, 陈锦路, 金梁程龙, 陶醉, 陈小丽, 彭国文. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426-1436. |
[15] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |