化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5896-5911.DOI: 10.16085/j.issn.1000-6613.2022-0164
赵国珂(), 潘国元, 张杨, 于浩, 赵慕华, 唐功庆, 刘轶群()
收稿日期:
2022-01-25
修回日期:
2022-03-10
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
刘轶群
作者简介:
赵国珂(1995—),女,博士,研究方向为低维碳纳米膜材料。E-mail:zhaogk.bjhy@sinopec.com。
ZHAO Guoke(), PAN Guoyuan, ZHANG Yang, YU Hao, ZHAO Muhua, TANG Gongqing, LIU Yiqun()
Received:
2022-01-25
Revised:
2022-03-10
Online:
2022-11-25
Published:
2022-11-28
Contact:
LIU Yiqun
摘要:
节能高效的CO2分离技术的开发具有重要的现实及长远意义,膜法CO2分离在该领域备受关注,具有优异传质特性的新型分离膜材料对膜分离过程有决定性的影响。近年来,石墨烯及其衍生材料因独特的单原子层厚度、亚纳米级别的孔道结构以及优异的机械、化学和热稳定性,成为气体分离膜领域的研究热点,膜的加工难度、技术成本、大面积制备、工作稳定性等问题是限制其实际应用的关键因素。石墨烯基CO2分离膜主要有三种形式:纳米孔石墨烯膜、层状结构氧化石墨烯膜、基于石墨烯及其衍生材料的混合基质膜。本文综述了石墨烯基CO2分离膜领域的突破性研究进展,重点介绍了气体的跨膜传质机理和膜的构性关系,总结了膜性能的优化思路和原理,梳理了石墨烯基CO2分离膜发展面临的挑战,提出了潜在的研究方向。分析表明,进行系统的理论研究,采用先进的表征手段,以建立膜构性关系的理论模型,指导膜结构设计是未来研究的重点。此外,进一步降低膜加工成本,充分研究膜在实际工作环境中的稳定性也至关重要。
中图分类号:
赵国珂, 潘国元, 张杨, 于浩, 赵慕华, 唐功庆, 刘轶群. 石墨烯基材料在CO2分离膜领域的研究进展[J]. 化工进展, 2022, 41(11): 5896-5911.
ZHAO Guoke, PAN Guoyuan, ZHANG Yang, YU Hao, ZHAO Muhua, TANG Gongqing, LIU Yiqun. Recent advances in graphene-based membranes for CO2 separation[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5896-5911.
膜材料 | 制备方法 | 分离物系 | 测试条件 | CO2渗透通量/GPU | 选择因子 | 参考文献 |
---|---|---|---|---|---|---|
纳米孔石墨烯膜 | 聚焦离子束轰击 | H2/CO2 | 室温,2bar | 6.4×106 | 4.69 | [ |
PEI修饰的纳米孔石墨烯 | 氧等离子体刻蚀 | CO2/N2 | 30℃,2bar | 6180 | 22.5 | [ |
GO膜 | 喷涂法 | H2/CO2 | 25℃,1bar | 3.88 | 20.9 | [ |
GO膜 | 真空抽滤法 | H2/CO2 | 20℃,1bar | 0.09 | 3400 | [ |
GO膜 | 真空抽滤法 | H2/CO2 | 室温,Ar吹扫 | 11.4 | 35.3 | [ |
GO膜 | 真空抽滤法 | H2/CO2 | 室温,Ar吹扫 | 4.25 | 240 | [ |
哌嗪修饰的GO膜 | 真空抽滤法 | CO2/N2 | 室温,He吹扫 | 1020 | 680 | [ |
乙二胺修饰的GO膜 | 真空抽滤法 | CO2/N2 | 75℃,He吹扫 | 660 | 500 | [ |
硼酸盐修饰的GO膜 | 真空抽滤法 | CO2/CH4 | 30℃,1bar | 650 | 75 | [ |
Zn2+修饰的GO膜 | 真空抽滤法 | CO2/CH4 | 30℃,1.5bar | 175 | 19.1 | [ |
离子液体修饰的GO膜 | 真空抽滤法 | CO2/N2 | 室温,1bar | 68.5 | 382 | [ |
表1 纳米孔石墨烯膜和GO膜的CO2分离性能对比
膜材料 | 制备方法 | 分离物系 | 测试条件 | CO2渗透通量/GPU | 选择因子 | 参考文献 |
---|---|---|---|---|---|---|
纳米孔石墨烯膜 | 聚焦离子束轰击 | H2/CO2 | 室温,2bar | 6.4×106 | 4.69 | [ |
PEI修饰的纳米孔石墨烯 | 氧等离子体刻蚀 | CO2/N2 | 30℃,2bar | 6180 | 22.5 | [ |
GO膜 | 喷涂法 | H2/CO2 | 25℃,1bar | 3.88 | 20.9 | [ |
GO膜 | 真空抽滤法 | H2/CO2 | 20℃,1bar | 0.09 | 3400 | [ |
GO膜 | 真空抽滤法 | H2/CO2 | 室温,Ar吹扫 | 11.4 | 35.3 | [ |
GO膜 | 真空抽滤法 | H2/CO2 | 室温,Ar吹扫 | 4.25 | 240 | [ |
哌嗪修饰的GO膜 | 真空抽滤法 | CO2/N2 | 室温,He吹扫 | 1020 | 680 | [ |
乙二胺修饰的GO膜 | 真空抽滤法 | CO2/N2 | 75℃,He吹扫 | 660 | 500 | [ |
硼酸盐修饰的GO膜 | 真空抽滤法 | CO2/CH4 | 30℃,1bar | 650 | 75 | [ |
Zn2+修饰的GO膜 | 真空抽滤法 | CO2/CH4 | 30℃,1.5bar | 175 | 19.1 | [ |
离子液体修饰的GO膜 | 真空抽滤法 | CO2/N2 | 室温,1bar | 68.5 | 382 | [ |
1 | CHEN Guining, WANG Tianlei, ZHANG Guangru, et al. Membrane materials targeting carbon capture and utilization[J]. Advanced Membranes, 2022, 2: 100025. |
2 | HAN Yang, WINSTON Ho W S. Polymeric membranes for CO2 separation and capture[J]. Journal of Membrane Science, 2021, 628: 119244. |
3 | MOGHADAM Farhad, PARK Ho Bum. Two-dimensional materials: an emerging platform for gas separation membranes[J]. Current Opinion in Chemical Engineering, 2018, 20: 28-38. |
4 | YOO Byung Min, SHIN Jae Eun, LEE Hee Dae, et al. Graphene and graphene oxide membranes for gas separation applications[J]. Current Opinion in Chemical Engineering, 2017, 16: 39-47. |
5 | NIDAMANURI Nagapradeep, LI Yaqi, LI Qiang, et al. Graphene and graphene oxide-based membranes for gas separation[J]. Engineered Science, 2020, 9: 3-16. |
6 | Scott BUNCH J, VERBRIDGE Scott S, ALDEN Jonathan S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462. |
7 | XU Pengtao, YANG Jixiang, WANG Kesai, et al. Porous graphene: properties, preparation, and potential applications[J]. Chinese Science Bulletin, 2012, 57(23): 2948-2955. |
8 | JIANG Deen, COOPER Valentino R, DAI Sheng. Porous graphene as the ultimate membrane for gas separation[J]. Nano Letters, 2009, 9(12): 4019-4024. |
9 | BELL D C, LEMME M C, STERN L A, et al. Precision cutting and patterning of graphene with helium ions[J]. Nanotechnology, 2009, 20(45): 455301. |
10 | YANG Rong, ZHANG Lianchang, WANG Yi, et al. An anisotropic etching effect in the graphene basal plane[J]. Advanced Materials, 2010, 22(36): 4014-4019. |
11 | BAI Jingwei, ZHONG Xing, JIANG Shan, et al. Graphene nanomesh[J]. Nature Nanotechnology, 2010, 5(3): 190-194. |
12 | HSU Kuang Jung, VILLALOBOS Luis Francisco, HUANG Shiqi, et al. Multipulsed millisecond ozone gasification for predictable tuning of nucleation and nucleation-decoupled nanopore expansion in graphene for carbon capture[J]. ACS Nano, 2021, 15(8): 13230-13239. |
13 | XIE Guibai, YANG Rong, CHEN Peng, et al. A general route towards defect and pore engineering in graphene[J]. Small, 2014, 10(11): 2280-2284. |
14 | FISCHBEIN Michael D, Marija DRNDIĆ. Electron beam nanosculpting of suspended graphene sheets[J]. Applied Physics Letters, 2008, 93(11): 113107. |
15 | RUSSO Christopher J, GOLOVCHENKO J A. Atom-by-atom nucleation and growth of graphene nanopores[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 5953-5957. |
16 | ZHAO Guoke, LI Xinming, HUANG Meirong, et al. The physics and chemistry of graphene-on-surfaces[J]. Chemical Society Reviews, 2017, 46(15): 4417-4449. |
17 | HUANG Shiqi, DAKHCHOUNE Mostapha, LUO Wen, et al. Single-layer graphene membranes by crack-free transfer for gas mixture separation[J]. Nature Communications, 2018, 9(1): 2632. |
18 | SAFRON Nathaniel S, KIM Myungwoong, GOPALAN Padma, et al. Barrier-guided growth of micro-and nano-structured graphene[J]. Advanced Materials, 2012, 24(8): 1041-1045. |
19 | VILLALOBOS Luis Francisco, VAN GOETHEM Cédric, HSU Kuang-Jung, et al. Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2022201118. |
20 | PAWLAK Rémy, LIU Xunshan, NINOVA Silviya, et al. Bottom-up synthesis of nitrogen-doped porous graphene nanoribbons[J]. Journal of the American Chemical Society, 2020, 142(29): 12568-12573. |
21 | NEUMANN Christof, KAISER David, MOHN Michael J, et al. Bottom-up synthesis of graphene monolayers with tunable crystallinity and porosity[J]. ACS Nano, 2019, 13(6): 7310-7322. |
22 | JACOBSE Peter H, MCCURDY Ryan D, JIANG Jingwei, et al. Bottom-up assembly of nanoporous graphene with emergent electronic states[J]. Journal of the American Chemical Society, 2020, 142(31): 13507-13514. |
23 | DRAHUSHUK Lee W, STRANO Michael S. Mechanisms of gas permeation through single layer graphene membranes[J]. Langmuir, 2012, 28(48): 16671-16678. |
24 | SHAN Meixia, XUE Qingzhong, JING Nuannuan, et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes[J]. Nanoscale, 2012, 4(17): 5477-5482. |
25 | GHIASI Mina, ZEINALI Parisa, GHOLAMI Samira, et al. Separation of CH4, H2S, N2 and CO2 gases using four types of nanoporous graphene cluster model: a quantum chemical investigation[J]. Journal of Molecular Modeling, 2021, 27(7): 1-13. |
26 | WU Tiantian, XUE Qingzhong, LING Cuicui, et al. Fluorine-modified porous graphene as membrane for CO2/N2 separation: molecular dynamic and first-principles simulations[J]. The Journal of Physical Chemistry C, 2014, 118(14): 7369-7376. |
27 | SUN Chengzhen, ZHU Shaohua, LIU Maochang, et al. Selective molecular sieving through a large graphene nanopore with surface charges[J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7188-7194. |
28 | TIAN Ziqi, MAHURIN Shannon M, DAI Sheng, et al. Ion-gated gas separation through porous graphene[J]. Nano Letters, 2017, 17(3): 1802-1807. |
29 | KOENIG Steven P, WANG Luda, PELLEGRINO John, et al. Selective molecular sieving through porous graphene[J]. Nature Nanotechnology, 2012, 7(11): 728-732. |
30 | CELEBI Kemal, BUCHHEIM Jakob, WYSS Roman M, et al. Ultimate permeation across atomically thin porous graphene[J]. Science, 2014, 344(6181): 289-292. |
31 | HE Guangwei, HUANG Shiqi, VILLALOBOS Luis Francisco, et al. High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target[J]. Energy & Environmental Science, 2019, 12(11): 3305-3312. |
32 | HUANG Kang, LIU Gongping, JIN Wanqin. Vapor transport in graphene oxide laminates and their application in pervaporation[J]. Current Opinion in Chemical Engineering, 2017, 16: 56-64. |
33 | GUAN Kecheng, SHEN Jie, LIU Gongping, et al. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport[J]. Separation and Purification Technology, 2017, 174: 126-135. |
34 | IBRAHIM Amr F M, LIN Y S. Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation[J]. Chemical Engineering Science, 2018, 190: 312-319. |
35 | SINGH Swati, VARGHESE Anish Mathai, REINALDA Donald, et al. Graphene-based membranes for carbon dioxide separation[J]. Journal of CO2 Utilization, 2021, 49: 101544. |
36 | TSOU Chi Hui, AN Quanfu, Shen Chuan LO, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of Membrane Science, 2015, 477: 93-100. |
37 | SHEN Jie, LIU Gongping, HUANG Kang, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving[J]. ACS Nano, 2016, 10(3): 3398-3409. |
38 | KIM Hyo Won, YOON Hee Wook, YOON Seon Mi, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154): 91-95. |
39 | LI Hang, SONG Zhuonan, ZHANG Xiaojie, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science, 2013, 342(6154): 95-98. |
40 | SU Y, KRAVETS V G, WONG S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nature Communications, 2014, 5: 4843. |
41 | IBRAHIM Amr, LIN Y S. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes[J]. Journal of Membrane Science, 2018, 550: 238-245. |
42 | LI Wen, ZHENG Xin, DONG Zihan, et al. Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes[J]. The Journal of Physical Chemistry C, 2016, 120(45): 26061-26066. |
43 | WANG Pan, LI Wen, DU Congcong, et al. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study[J]. Computational Materials Science, 2017, 140: 284-289. |
44 | CHI Chenglong, WANG Xuerui, PENG Yongwu, et al. Facile preparation of graphene oxide membranes for gas separation[J]. Chemistry of Materials, 2016, 28(9): 2921-2927. |
45 | KIM Hyo Won, YOON Hee Wook, YOO Byung Min, et al. High-performance CO2-philic graphene oxide membranes under wet-conditions[J]. Chemical Communications, 2014, 50(88): 13563-13566. |
46 | ZHOU Fanglei, TIEN Huynh Ngoc, XU Weiwei L, et al. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture[J]. Nature Communications, 2017, 8(1): 2107. |
47 | ZHOU Fanglei, TIEN Huynh Ngoc, DONG Qiaobei, et al. Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture[J]. Journal of Membrane Science, 2019, 573: 184-191. |
48 | WANG Shaofei, WU Yingzhen, ZHANG Ning, et al. A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture[J]. Energy & Environmental Science, 2016, 9(10): 3107-3112. |
49 | REN Yanxiong, PENG Dongdong, WU Hong, et al. Enhanced carbon dioxide flux by catechol-Zn2+ synergistic manipulation of graphene oxide membranes[J]. Chemical Engineering Science, 2019, 195: 230-238. |
50 | LIU Zhuang, ZHAI Yeming, ZHOU Kaige, et al. Advanced membranes with responsive two-dimensional nanochannels[J]. Advanced Membranes, 2021, 1: 100012. |
51 | LIU Meiling, GUO Jialin, JAPIP Susilo, et al. One-step enhancement of solvent transport, stability and photocatalytic properties of graphene oxide/polyimide membranes with multifunctional cross-linkers[J]. Journal of Materials Chemistry A, 2019, 7(7): 3170-3178. |
52 | LEE Yunyang, GURKAN Burcu. Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation[J]. Journal of Membrane Science, 2021, 638: 119652. |
53 | YING Wen, CAI Jingsong, ZHOU Ke, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12(6): 5385-5393. |
54 | YING Wen, ZHOU Ke, HOU Quangang, et al. Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. Journal of Materials Chemistry A, 2019, 7(25): 15062-15067. |
55 | WU Mian, SONG Xiangju, ZHANG Xiaoqian, et al. A reduced pressure-assisted vapor penetration of ionic liquid into the laminated graphene oxide membranes for efficient CO2 separation[J]. Separation and Purification Technology, 2022, 287: 120514. |
56 | XIN Qingping, LI Zhao, LI Congdi, et al. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide[J]. Journal of Materials Chemistry A, 2015, 3(12): 6629-6641. |
57 | LI Xueqin, CHENG Youdong, ZHANG Haiyang, et al. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5528-5537. |
58 | HUANG Tse Chiang, LIU Yucheng, LIN Gengsheng, et al. Fabrication of pebax-1657-based mixed-matrix membranes incorporating N-doped few-layer graphene for carbon dioxide capture enhancement[J]. Journal of Membrane Science, 2020, 602: 117946. |
59 | YANG Euntae, Kunli GOH, CHUAH Chong Yang, et al. Asymmetric mixed-matrix membranes incorporated with nitrogen-doped graphene nanosheets for highly selective gas separation[J]. Journal of Membrane Science, 2020, 615: 118293. |
60 | DONG Guanying, ZHANG Yatao, HOU Jingwei, et al. Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO2 capture[J]. Industrial & Engineering Chemistry Research, 2016, 55(18): 5403-5414. |
61 | 时飞, 李奕帆. 混合基质膜在碳捕集领域的研究进展[J]. 化工进展, 2020, 39(6): 2453-2462. |
SHI Fei, LI Yifan. Advances of mixed matrix membrane for CO2 capture[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. | |
62 | FAN Yanfang, WANG Xueli, LI Nanwen. Interfacial manipulation of MOFs/polymer mixed matrix membranes for gas separations: a review[J]. Chinese Science Bulletin, 2021, 66(23): 2930-2942. |
63 | YANG Liuxin, LUO Wenhua, WANG Changan, et al. Novel inorganic two-dimensional materials for gas separation membranes[J]. Journal of Inorganic Materials, 2020, 35(9): 959. |
64 | ZHAO Li, CHENG Cheng, CHEN Yufei, et al. Enhancement on the permeation performance of polyimide mixed matrix membranes by incorporation of graphene oxide with different oxidation degrees[J]. Polymers for Advanced Technologies, 2015, 26(4): 330-337. |
65 | WANG Ting, ZHAO Li, SHEN Jiangnan, et al. Enhanced performance of polyurethane hybrid membranes for CO2 separation by incorporating graphene oxide: the relationship between membrane performance and morphology of graphene oxide[J]. Environmental Science & Technology, 2015, 49(13): 8004-8011. |
66 | SHEN Jie, ZHANG Mengchen, LIU Gongping, et al. Facile tailoring of the two-dimensional graphene oxide channels for gas separation[J]. RSC Advances, 2016, 6(59): 54281-54285. |
67 | DONG Guanying, HOU Jingwei, WANG Jing, et al. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 860-868. |
68 | SHEN Jie, ZHANG Mengchen, LIU Gongping, et al. Size effects of graphene oxide on mixed matrix membranes for CO2 separation[J]. AIChE Journal, 2016, 62(8): 2843-2852. |
69 | SHEN Jie, LIU Gongping, HUANG Kang, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angewandte Chemie International Edition, 2015, 54(2): 578-582. |
70 | ZHANG Yatao, SHEN Qin, HOU Jingwei, et al. Shear-aligned graphene oxide laminate/Pebax ultrathin composite hollow fiber membranes using a facile dip-coating approach[J]. Journal of Materials Chemistry A, 2017, 5(17): 7732-7737. |
71 | MOHAMMED Shawqi Ali, NASIR A M, AZIZ F, et al. CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane[J]. Separation and Purification Technology, 2019, 223: 142-153. |
72 | CHEN Zan, ZHANG Peng, WU Hong, et al. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation[J]. Separation and Purification Technology, 2022, 288: 120682. |
73 | ZHANG Jinhui, XIN Qingping, LI Xu, et al. Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation[J]. Journal of Membrane Science, 2019, 570/571: 343-354. |
74 | DAI Yan, RUAN Xuehua, YAN Zhijun, et al. Imidazole functionalized graphene oxide/Pebax mixed matrix membranes for efficient CO2 capture[J]. Separation and Purification Technology, 2016, 166: 171-180. |
75 | PENG Dongdong, WANG Shaofei, TIAN Zhizhang, et al. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation[J]. Journal of Membrane Science, 2017, 522: 351-362. |
76 | HUANG Guoji, ISFAHANI Ali Pournaghshband, MUCHTAR Ansori, et al. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture[J]. Journal of Membrane Science, 2018, 565: 370-379. |
77 | Winny FAM, MANSOURI Jaleh, LI Hongyu, et al. Gelled graphene oxide-ionic liquid composite membranes with enriched ionic liquid surfaces for improved CO2 separation[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7389-7400. |
78 | SHIN Jae Eun, LEE Seul Ki, CHO Young Hoon, et al. Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2019, 572: 300-308. |
79 | YANG Kai, DAI Yan, RUAN Xuehua, et al. Stretched ZIF-8@GO flake-like fillers via pre-Zn(Ⅱ)-doping strategy to enhance CO2 permeation in mixed matrix membranes[J]. Journal of Membrane Science, 2020, 601: 117934. |
80 | YANG Kai, DAI Yan, ZHENG Wenji, et al. ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranes[J]. Separation and Purification Technology, 2019, 214: 87-94. |
81 | LI Wen, CHUAH Chong Yang, NIE Lina, et al. Enhanced CO2/CH4 selectivity and mechanical strength of mixed-matrix membrane incorporated with NiDOBDC/GO composite[J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 118-125. |
82 | HE Rongrong, CONG Shenzhen, WANG Jing, et al. Porous graphene oxide/porous organic polymer hybrid nanosheets functionalized mixed matrix membrane for efficient CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4338-4344. |
[1] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[2] | 李亚男, 年佩, 徐楠, 罗海玉, 魏逸彬. 面向精密流体分离的MXene基膜材料研究进展[J]. 化工进展, 2023, 42(10): 5249-5258. |
[3] | 方龙龙, 郑文姬, 宁梦佳, 张明扬, 杨雨晴, 代岩, 贺高红. 功能化Zr-MOF强化混合基质膜CO2分离[J]. 化工进展, 2022, 41(9): 4954-4962. |
[4] | 李佩珊, 张梦辰, 李铭杰, 郑文镳, 刘敏超, 谢高艺, 徐晓龙, 刘长宇, 郏建波. 基于二维材料膜构筑纳米流体通道的研究进展[J]. 化工进展, 2022, 41(7): 3745-3757. |
[5] | 王亚楠, 孟秀霞, 张维民, 杨乃涛. 表/界面调控策略在氢/氧反应电极中的研究进展[J]. 化工进展, 2022, 41(5): 2416-2428. |
[6] | 王志, 原野, 生梦龙, 李庆华. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
[7] | 张青宗, 吕秋楠, 李小森, 余益松, 周诗岽. 玉米棒+四氢呋喃对IGCC合成气水合物生成动力学的影响[J]. 化工进展, 2022, 41(1): 174-181. |
[8] | 刘艳, 年佩, 张轩, 黄锐, 王政, 姜男哲. Langmuir-Blodgett法制备高H2选择性取向ZSM-5分子筛分离膜[J]. 化工进展, 2021, 40(4): 2243-2250. |
[9] | 宁梦佳, 代岩, 郗元, 章星, 刘红晶, 贺高红. Cu(Qc)2强化Pebax混合基质膜分离CO2[J]. 化工进展, 2021, 40(10): 5652-5659. |
[10] | 陈丙晨, 徐积斌, 万超, 董亮亮, 张春芳, 白云翔. 用于CO2/CH4分离的cPIM-1/ZIF-8混合基质膜的制备[J]. 化工进展, 2020, 39(9): 3518-3524. |
[11] | 时飞, 李奕帆. 混合基质膜在碳捕集领域的研究进展[J]. 化工进展, 2020, 39(6): 2453-2462. |
[12] | 张创, 王诚, 汪云, 贾志勇, 史坤明, 蒋国璋, 陈运星. 一维/二维混合负载Pt催化剂的电化学性能[J]. 化工进展, 2017, 36(02): 573-580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |