化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1726-1738.DOI: 10.16085/j.issn.1000-6613.2024-0365
收稿日期:2024-03-05
修回日期:2024-05-22
出版日期:2025-03-25
发布日期:2025-04-15
通讯作者:
孙鸣
作者简介:张伊(1998—),女,硕士研究生,研究方向为分子筛合成及吸附性能。E-mail:15388687315@163.com。
基金资助:
ZHANG Yi1(
), YAO Qiuxiang2, SUN Ming1(
)
Received:2024-03-05
Revised:2024-05-22
Online:2025-03-25
Published:2025-04-15
Contact:
SUN Ming
摘要:
首次以天然斜发沸石为原料,在无需额外添加硅铝源的基础上通过水热法制备方沸石(ANA),并采用NaOH和NaCl对ANA进行改性制得OH-ANA和Na-ANA。采用XRD、SEM、FTIR、BET、zeta电位和ICP-OES对合成沸石进行了表征,并研究了合成沸石对Pb2+的吸附性能。结果表明,改性后的Na-ANA和OH-ANA的比表面积均高于ANA,Na-ANA和OH-ANA对Pb2+最大吸附容量分别为96.00mg/g、125.54mg/g,均大于ANA的71.95mg/g,表明天然斜发沸石基方沸石在经过改性后吸附性能有所提升。ANA、Na-ANA和OH-ANA对Pb2+吸附是一个吸热的自发过程,符合伪二级动力学和Langmuir等温线模型,且吸附速率由外扩散和颗粒内扩散共同控制。材料表征结果显示,ANA、Na-ANA和OH-ANA对Pb2+吸附机理是静电吸引、离子交换和化学络合三者的协同作用。再生循环实验表明,OH-ANA材料具有良好的可再生性能。综上所述,ANA、Na-ANA和OH-ANA在去除重金属离子方面具有一定的应用潜力。
中图分类号:
张伊, 么秋香, 孙鸣. 天然斜发沸石基方沸石及其改性对Pb2+的吸附性能[J]. 化工进展, 2025, 44(3): 1726-1738.
ZHANG Yi, YAO Qiuxiang, SUN Ming. Adsorption performance of natural clinoptilolite based analcime and its modifications on Pb2+[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1726-1738.
| SiO2 | Al2O3 | TiO2 | FeO | MgO | CaO | NaO | K2O |
|---|---|---|---|---|---|---|---|
| 69.58 | 12.20 | 0.14 | 0.05 | 0.13 | 1.59 | 2.59 | 1.13 |
表1 天然斜发沸石的主要化学成分 (质量分数,%)
| SiO2 | Al2O3 | TiO2 | FeO | MgO | CaO | NaO | K2O |
|---|---|---|---|---|---|---|---|
| 69.58 | 12.20 | 0.14 | 0.05 | 0.13 | 1.59 | 2.59 | 1.13 |
| 合成沸石材料 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|
| ANA | 7.9 | 0.049 | 16.3 |
| Na-ANA | 8.3 | 0.065 | 21.6 |
| OH-ANA | 11.1 | 0.057 | 20.7 |
表2 合成沸石的表面性质
| 合成沸石材料 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|
| ANA | 7.9 | 0.049 | 16.3 |
| Na-ANA | 8.3 | 0.065 | 21.6 |
| OH-ANA | 11.1 | 0.057 | 20.7 |
| 动力学模型 | ANA | Na-ANA | OH-ANA |
|---|---|---|---|
| PFO | |||
| k1/min-1 | 0.0027 | 0.0029 | 0.0034 |
| qe/mg·g-1 | 10.858 | 5.0527 | 1.3899 |
| R12 | 0.7895 | 0.7416 | 0.6695 |
| PSO | |||
| k2/g·mg-1·min-1 | 0.0075 | 0.0183 | 0.0698 |
| qe/mg·g-1 | 68.493 | 86.730 | 99.404 |
| R22 | 0.9999 | 0.9999 | 0.9999 |
| 颗粒内扩散模型 | |||
| 阶段1 | |||
| kp1/mg·g-1·min-1 | 4.14 | 2.9812 | 1.2565 |
| C1/mg·g-1 | 43.03 | 71.499 | 93.911 |
| R12 | 0.9804 | 0.9756 | 0.9128 |
| 阶段2 | |||
| kp2/mg·g-1·min-1 | 1.48 | 0.4822 | 0.1209 |
| C2/mg·g-1 | 54.96 | 81.934 | 98.168 |
| R22 | 0.9764 | 0.9670 | 0.8149 |
| 阶段3 | |||
| kp3/mg·g-1·min-1 | 0.1046 | 0.0480 | 0.0120 |
| C3/mg·g-1 | 66.20 | 85.731 | 99.174 |
| R32 | 0.8810 | 0.8972 | 0.7339 |
表3 合成沸石吸附Pb2+的动力学参数
| 动力学模型 | ANA | Na-ANA | OH-ANA |
|---|---|---|---|
| PFO | |||
| k1/min-1 | 0.0027 | 0.0029 | 0.0034 |
| qe/mg·g-1 | 10.858 | 5.0527 | 1.3899 |
| R12 | 0.7895 | 0.7416 | 0.6695 |
| PSO | |||
| k2/g·mg-1·min-1 | 0.0075 | 0.0183 | 0.0698 |
| qe/mg·g-1 | 68.493 | 86.730 | 99.404 |
| R22 | 0.9999 | 0.9999 | 0.9999 |
| 颗粒内扩散模型 | |||
| 阶段1 | |||
| kp1/mg·g-1·min-1 | 4.14 | 2.9812 | 1.2565 |
| C1/mg·g-1 | 43.03 | 71.499 | 93.911 |
| R12 | 0.9804 | 0.9756 | 0.9128 |
| 阶段2 | |||
| kp2/mg·g-1·min-1 | 1.48 | 0.4822 | 0.1209 |
| C2/mg·g-1 | 54.96 | 81.934 | 98.168 |
| R22 | 0.9764 | 0.9670 | 0.8149 |
| 阶段3 | |||
| kp3/mg·g-1·min-1 | 0.1046 | 0.0480 | 0.0120 |
| C3/mg·g-1 | 66.20 | 85.731 | 99.174 |
| R32 | 0.8810 | 0.8972 | 0.7339 |
| 合成沸石材料 | Langmuir | Freundlich | ||||
|---|---|---|---|---|---|---|
| qm/mg·g-1 | kL/L·mg-1 | R2 | 1/n | kF/mg·g-1 | R2 | |
| ANA | 69.729 | 0.3825 | 0.9741 | 0.2395 | 23.4492 | 0.9081 |
| Na-ANA | 95.005 | 1.0122 | 0.9852 | 0.0476 | 39.1794 | 0.8143 |
| OH-ANA | 128.203 | 1.7122 | 0.9398 | 0.2229 | 58.9188 | 0.7042 |
表4 合成沸石吸附Pb2+的等温线参数
| 合成沸石材料 | Langmuir | Freundlich | ||||
|---|---|---|---|---|---|---|
| qm/mg·g-1 | kL/L·mg-1 | R2 | 1/n | kF/mg·g-1 | R2 | |
| ANA | 69.729 | 0.3825 | 0.9741 | 0.2395 | 23.4492 | 0.9081 |
| Na-ANA | 95.005 | 1.0122 | 0.9852 | 0.0476 | 39.1794 | 0.8143 |
| OH-ANA | 128.203 | 1.7122 | 0.9398 | 0.2229 | 58.9188 | 0.7042 |
| 吸附剂 | pH | qm/mg·g-1 | 等温线模型 | 参考文献 |
|---|---|---|---|---|
| 沸石复合材料 | 6 | 47.619 | Langmuir | [ |
| 沸石+凝灰岩 | 3.5 | 27.548 | Langmuir | [ |
| 铁改性沸石 | 6.5 | 11.16 | Langmuir | [ |
| 硅酸铝钠水合物/ANA | 5.5 | 58.86 | Langmuir | [ |
| ZSM-5沸石 | 3 | 20.1 | Langmuir | [ |
| Y沸石 | 4.7 | 57.47 | Langmuir | [ |
| 天然沸石 | 7 | 7.59 | Langmuir | [ |
| 5A沸石 | 5.5 | 46.67 | Langmuir | [ |
| ZSM-5分子筛 | 4 | 14.39 | Langmuir | [ |
| ANA | 5 | 69.729 | Langmuir | 本研究 |
| Na-ANA | 5 | 95.005 | Langmuir | 本研究 |
| OH-ANA | 5 | 128.203 | Langmuir | 本研究 |
表5 与现有文献报道的沸石吸附剂对Pb2+最大吸附量的对比
| 吸附剂 | pH | qm/mg·g-1 | 等温线模型 | 参考文献 |
|---|---|---|---|---|
| 沸石复合材料 | 6 | 47.619 | Langmuir | [ |
| 沸石+凝灰岩 | 3.5 | 27.548 | Langmuir | [ |
| 铁改性沸石 | 6.5 | 11.16 | Langmuir | [ |
| 硅酸铝钠水合物/ANA | 5.5 | 58.86 | Langmuir | [ |
| ZSM-5沸石 | 3 | 20.1 | Langmuir | [ |
| Y沸石 | 4.7 | 57.47 | Langmuir | [ |
| 天然沸石 | 7 | 7.59 | Langmuir | [ |
| 5A沸石 | 5.5 | 46.67 | Langmuir | [ |
| ZSM-5分子筛 | 4 | 14.39 | Langmuir | [ |
| ANA | 5 | 69.729 | Langmuir | 本研究 |
| Na-ANA | 5 | 95.005 | Langmuir | 本研究 |
| OH-ANA | 5 | 128.203 | Langmuir | 本研究 |
| 合成沸石材料 | T/K | ∆G/kJ·mol-1 | ∆H/kJ·mol-1 | ∆S/J·mol-1·K-1 |
|---|---|---|---|---|
| ANA | 298 | -0.12 | 4.42 | 15.26 |
| 308 | -0.29 | |||
| 318 | -0.46 | |||
| 328 | -0.56 | |||
| Na-ANA | 298 | -2.86 | 11.70 | 48.76 |
| 308 | -3.27 | |||
| 318 | -3.81 | |||
| 328 | -4.31 | |||
| OH-ANA | 298 | -10.66 | 20.67 | 105.13 |
| 308 | -11.76 | |||
| 318 | -12.64 | |||
| 328 | -13.88 |
表6 合成沸石对Pb2+吸附热力学参数
| 合成沸石材料 | T/K | ∆G/kJ·mol-1 | ∆H/kJ·mol-1 | ∆S/J·mol-1·K-1 |
|---|---|---|---|---|
| ANA | 298 | -0.12 | 4.42 | 15.26 |
| 308 | -0.29 | |||
| 318 | -0.46 | |||
| 328 | -0.56 | |||
| Na-ANA | 298 | -2.86 | 11.70 | 48.76 |
| 308 | -3.27 | |||
| 318 | -3.81 | |||
| 328 | -4.31 | |||
| OH-ANA | 298 | -10.66 | 20.67 | 105.13 |
| 308 | -11.76 | |||
| 318 | -12.64 | |||
| 328 | -13.88 |
| 吸附剂 | 去除率/% | 参考文献 | |
|---|---|---|---|
| 循环0次 | 循环4次 | ||
| 沸石咪唑骨架 | 79.77 | 51.18 | [ |
| 壳聚糖复合材料 | 98.65 | 64.50 | [ |
| 气凝胶 | 95.9 | 75.81 | [ |
| 层状金属氧化物 | 75.97 | 7.76 | [ |
| 复合吸附材料 | 92.21 | 66.65 | [ |
| 多糖水凝胶 | 91.79 | 67.34 | [ |
| 改性褐煤 | 91.55 | 53.14 | [ |
| OH-ANA | 99.32 | 74.03 | 本研究 |
表7 不同吸附剂对Pb2+循环去除率对比
| 吸附剂 | 去除率/% | 参考文献 | |
|---|---|---|---|
| 循环0次 | 循环4次 | ||
| 沸石咪唑骨架 | 79.77 | 51.18 | [ |
| 壳聚糖复合材料 | 98.65 | 64.50 | [ |
| 气凝胶 | 95.9 | 75.81 | [ |
| 层状金属氧化物 | 75.97 | 7.76 | [ |
| 复合吸附材料 | 92.21 | 66.65 | [ |
| 多糖水凝胶 | 91.79 | 67.34 | [ |
| 改性褐煤 | 91.55 | 53.14 | [ |
| OH-ANA | 99.32 | 74.03 | 本研究 |
| 1 | ZHAI Shimin, LI Min, PENG Hongyun, et al. Cost-effective resource utilization for waste biomass: A simple preparation method of photo-thermal biochar cakes (BCs) toward dye wastewater treatment with solar energy[J]. Environmental Research, 2021, 194: 110720. |
| 2 | DENG Rui, HUANG Danlian, ZENG Guangming, et al. Decontamination of lead and tetracycline from aqueous solution by a promising carbonaceous nanocomposite: Interaction and mechanisms insight[J]. Bioresource Technology, 2019, 283: 277-285. |
| 3 | ROSHANFEKR RAD Leila, ANBIA Mansoor. Zeolite-based composites for the adsorption of toxic matters from water: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106088. |
| 4 | 王路星, 周新涛, 罗中秋, 等. 农林废弃物吸附废水中重金属Pb2+的性能及机理研究进展[J]. 材料导报, 2020, 34(17): 17115-17123. |
| WANG Luxing, ZHOU Xintao, LUO Zhongqiu, et al. Research progress of the properties and mechanism of heavy metal Pb2+ absorbed by agricultural and forestry waste in wastewater[J]. Materials Reports, 2020, 34(17): 17115-17123. | |
| 5 | 路广军, 韩晋钢, 陈英, 等. 镁渣基多孔材料的制备及其对废水中Pb2+的吸附性能[J]. 化工进展, 2024, 43(4): 2126-2134. |
| LU Guangjun, HAN Jingang, CHEN Ying, et al. Preparation of magnesium slag-based porous materials and their performance for Pb2+ adsorption in wastewater[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2126-2134. | |
| 6 | 陆艳, 罗中秋, 周新涛, 等. 铜渣铁基类沸石地质聚合物吸附Pb2+、Cu2+、Zn2+性能及机理[J]. 精细化工, 2023, 40(12): 2739-2751. |
| LU Yan, LUO Zhongqiu, ZHOU Xintao, et al. Adsorption properties and mechanism of Pb2+, Cu2+ and Zn2+ by iron base zeolite-like geopolymer derived from copper slag[J]. Fine Chemicals, 2023, 40(12): 2739-2751. | |
| 7 | KHAKSARFARD Yasaman, BAGHERI Ahmad, RAFATI Amir Abbas. Synergistic effects of binary surfactant mixtures in the adsorption of diclofenac sodium drug from aqueous solution by modified zeolite[J]. Journal of Colloid and Interface Science, 2023, 644: 186-199. |
| 8 | 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 236-242. |
| SONG Xuefeng, LU Weining. Influence of conversion method on in-situ conversion of fly ash geopolymer to zeolite and its Pb2+ adsorption performance[J]. Materials Reports, 2023, 37(6): 236-242. | |
| 9 | ERDEM E, KARAPINAR N, DONAT R. The removal of heavy metal cations by natural zeolites[J]. Journal of Colloid and Interface Science, 2004, 280(2): 309-314. |
| 10 | NAKHAEI Mohammad, MOKHTARI Hamid Reza, VATANPOUR Vahid, et al. Investigating the effectiveness of natural zeolite (clinoptilolite) for the removal of lead, cadmium, and cobalt heavy metals in the western parts of Iran’s varamin aquifer[J]. Water, Air, & Soil Pollution, 2023, 234(12): 746. |
| 11 | WANG Cheng, YU Jiale, FENG Kai, et al. Alkali treatment to transform natural clinoptilolite into zeolite Na-P: Influence of NaOH concentration[J]. Journal of Physics and Chemistry of Solids, 2022, 168: 110827. |
| 12 | HEGAZY Eman Z, EL MAKSOD Islam Hamdy Abd, ENIN RMM Abo EL. Preparation and characterization of Ti and V modified analcime from local Kaolin[J]. Applied Clay Science, 2010, 49(3): 149-155. |
| 13 | GALINDO VALBUENA Hugo Martín, MEDINA Andrés F, VARGAS Julio C, et al. Synthesis of zeolites Na-A, Na-X, and analcime from crushed stone waste and their applications in heavy metal removal in aqueous media[J]. Chemical Engineering Research and Design, 2023, 197: 159-172. |
| 14 | WANG Shiyao, TIAN Ren, HE Bo, et al. The success of dual-functional templating for synthesizing hierarchical analcime zeolite[J]. Applied Organometallic Chemistry, 2019, 33(4): e4711. |
| 15 | REVELLAME Emmanuel D, FORTELA Dhan Lord, SHARP Wayne, et al. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review[J]. Cleaner Engineering and Technology, 2020, 1: 100032. |
| 16 | Bo LYU, DENG Xiaowei, JIAO Feishuo, et al. Removal of Pb2+ in aqueous solutions using Na-type zeolite synthesized from coal gasification slag in a fluidized bed: Hydrodynamic and adsorption[J]. Process Safety and Environmental Protection, 2023, 174: 869-881. |
| 17 | INCE Olcay Kaplan, INCE Muharrem, YONTEN Vahap, et al. A food waste utilization study for removing lead(Ⅱ) from drinks[J]. Food Chemistry, 2017, 214: 637-643. |
| 18 | 陈作义, 陈考昌, 李华辉, 等. CA/COSBC复合凝胶微球的制备及其对Pb(Ⅱ)的吸附性能[J/OL]. 精细化工,2024(11):109-118. |
| CHEN Zuoyi, CHEN Kaochang, LI Huahui, et al. Preparation of Pb(Ⅱ) adsorption performance of CA/COSBC composite gel microspheres[J/OL]. Fine Chemicals,2024(11):109-118. | |
| 19 | Yunier GARCIA-BASABE, Inocente RODRIGUEZ-IZNAGA, DE MENORVAL Louis-Charles, et al. Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization[J]. Microporous and Mesoporous Materials, 2010, 135(1/2/3): 187-196. |
| 20 | NOVEMBRE Daniela, GIMENO Domingo. Synthesis and characterization of analcime (ANA) zeolite using a kaolinitic rock[J]. Scientific Reports, 2021, 11(1): 13373. |
| 21 | WANG Jin, WU Xiuling, WANG Junxia, et al. Hydrothermal synthesis and characterization of alkali-activated slag-fly ash-metakaolin cementitious materials[J]. Microporous and Mesoporous Materials, 2012, 155: 186-191. |
| 22 | 仉铭坤, 杨红薇, 杜明阳, 等. 改性沸石对二级生化出水中氨氮的吸附特性[J]. 环境工程学报, 2020, 14(4): 896-905. |
| ZHANG Mingkun, YANG Hongwei, DU Mingyang, et al. Adsorption characteristics of ammonia nitrogen in secondary effluent on modified zeolite[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 896-905. | |
| 23 | BAYRAKDAR ATES Ezgi. Exploring the impact of NaOH pre-treatment for H2 and CO2 adsorption on clinoptilolite[J]. International Journal of Hydrogen Energy, 2024, 50: 990-1003. |
| 24 | NGUYEN M L, TANNER C C. Ammonium removal from wastewaters using natural New Zealand zeolites[J]. New Zealand Journal of Agricultural Research, 1998, 41(3): 427-446. |
| 25 | ISAWI Heba. Using Zeolite/Polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater[J]. Arabian Journal of Chemistry, 2020, 13(6): 5691-5716. |
| 26 | ZENDELSKA Afrodita, GOLOMEOVA Mirjana, GOLOMEOV Blagoj, et al. Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff[J]. Archives of Environmental Protection, 2018: 40(1): 87-96. |
| 27 | NGUYEN Thuy Chung, LOGANATHAN Paripurnanda, NGUYEN Tien Vinh, et al. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies[J]. Chemical Engineering Journal, 2015, 270: 393-404. |
| 28 | ABDELRAHMAN Ehab A, ALHARBI Ahmed, SUBAIHI Abdu, et al. Facile fabrication of novel analcime/sodium aluminum silicate hydrate and zeolite Y/faujasite mesoporous nanocomposites for efficient removal of Cu(Ⅱ) and Pb(Ⅱ) ions from aqueous media[J]. Journal of Materials Research and Technology, 2020, 9(4): 7900-7914. |
| 29 | WANG Xiangxue, SHAO Dadong, HOU Guangshun, et al. Uptake of Pb(Ⅱ) and U(Ⅵ) ions from aqueous solutions by the ZSM-5 zeolite[J]. Journal of Molecular Liquids, 2015, 207: 338-342. |
| 30 | HAMOUDI Souhila Ait, KHELIFA Nedjma, NOURI Loubna, et al. Removal of Pb2+ and Cd2+ by adsorption onto Y zeolite and its selectivity of retention in an actual contaminated effluent[J]. Colloid and Polymer Science, 2023, 301(6): 631-645. |
| 31 | WANGI G M, OLUPOT P W, BYARUHANGA J, et al. Characterization of natural zeolite and determination of its ion-exchange potential for selected metal ions in water[J]. Environmental Processes, 2023, 10(4): 53. |
| 32 | MAYTA-ARMAS Angie F, Yamerson CANCHANYA-HUAMAN, Jemina POMALAYA-VELASCO, et al. Enhanced removal of As(Ⅴ) and Pb(Ⅱ) from drinking and irrigating water effluents using hydrothermally synthesized zeolite 5A[J]. Water, 2023, 15(10): 1892. |
| 33 | ZHANG Yunhui, ALESSI Daniel S, CHEN Ning, et al. Spectroscopic and modeling investigation of sorption of Pb(Ⅱ) to ZSM-5 zeolites[J]. ACS ES&T Water, 2021, 1(1): 108-116. |
| 34 | 董颖博, 林海, 刘泉利. 化学改性对沸石去除水中碳、氮污染物的影响[J]. 四川大学学报(工程科学版), 2015, 47(3): 193-199. |
| DONG Yingbo, LIN Hai, LIU Quanli. Effects of chemical modification on removal of pollutants with carbon and nitrogen from aqueous solution by zeolite[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(3): 193-199. | |
| 35 | 杨岳, 吴涛涛, 王闰民, 等. 沸石改性及对水中氨氮的吸附性能研究[J]. 环境与发展, 2020, 32(9): 118-120. |
| YANG Yue, WU Taotao, WANG Runmin, et al. Research on adsorption of ammonia nitrogen in water with modified zeolite[J]. Environment and Development, 2020, 32(9): 118-120. | |
| 36 | 郭宇, 佟民心, 吴红梅. 氨基功能化双醛淀粉吸附剂的制备及其对Pb(Ⅱ)的吸附行为[J]. 化工进展, 2023, 42(12): 6589-6599. |
| GUO Yu, TONG Minxin, WU Hongmei. Preparation of amino-functionalized dialdehyde starch adsorbent for adsorption of Pb(Ⅱ) ions[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6589-6599. | |
| 37 | LV Yingwei, MA Baozhong, LIU Yubo, et al. Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue[J]. Microporous and Mesoporous Materials, 2022, 329: 111553. |
| 38 | PENG Jun, ZHANG Ziyue, WANG Ziwei, et al. Adsorption of Pb2+ in solution by phosphate-solubilizing microbially modified biochar loaded with Fe3O4 [J]. Journal of the Taiwan Institute of Chemical Engineers, 2024, 156: 105363. |
| 39 | 吴红梅, 徐靖雯, 郭宇, 等. 席夫碱改性MCM-41分子筛的制备及其对铅离子的吸附性能[J]. 分析化学, 2024, 52(1): 102-112. |
| WU Hongmei, XU Jingwen, GUO Yu, et al. Characterization of schiff base modified MCM-41 molecular sieve for adsorption of lead ions from aqueous solution[J]. Chinese Journal of Analytical Chemistry, 2024, 52(1): 102-112. | |
| 40 | KIM Gyuri, Yeonji YEA, NJARAMBA Lewis Kamande, et al. Synthesis, performance, and mechanisms of strontium ferrite-incorporated zeolite imidazole framework (ZIF-8) for the simultaneous removal of Pb(Ⅱ) and tetracycline[J]. Environmental Research, 2022, 212(Pt C): 113419. |
| 41 | LI Jing, LIN Guo, ZHONG Zhen, et al. A novel magnetic Ti-MOF/chitosan composite for efficient adsorption of Pb(Ⅱ) from aqueous solutions: Synthesis and investigation[J]. International Journal of Biological Macromolecules, 2024, 258: 129170. |
| 42 | 田甜, 付义乐, 关丽, 等. 海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对Pb(Ⅱ)的吸附[J]. 复合材料学报, 2023, 40(10): 5792-5802. |
| TIAN Tian, FU Yile, GUAN Li, et al. Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb (Ⅱ) ion[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5792-5802. | |
| 43 | HUANG Yongxiang, LUO Xiangping, LIU Chongmin, et al. Effective adsorption of Pb(Ⅱ) from wastewater using MnO2 loaded MgFe-LD(H)O composites: Adsorption behavior and mechanism[J]. RSC Advances, 2023, 13(28): 19288-19300. |
| 44 | LI Jing, HU Zehua, CHEN Yilin, et al. Removal of Pb(II) by adsorption of HCO-(Fe3O4) x composite adsorbent: Efficacy and mechanism[J]. Water, 2023, 15(10): 1857. |
| 45 | ZOU Yilong. Cu2+, Cd2+, and Pb2+ ions adsorption from wastewater using polysaccharide hydrogels made of oxidized carboxymethyl cellulose and chitosan grafted with catechol groups[J]. Iranian Polymer Journal, 2024, 33(1): 57-66. |
| 46 | AN Wenbo, LIU Yifan, CHEN He, et al. Oyster shell-modified lignite composite in globular shape as a low-cost adsorbent for the removal of Pb2+ and Cd2+ from AMD: Evaluation of adsorption properties and exploration of potential mechanisms[J]. Arabian Journal of Chemistry, 2024, 17(5): 105732. |
| [1] | 路广军, 韩晋钢, 陈英, 马志斌. 镁渣基多孔材料的制备及其对废水中Pb2+的吸附性能[J]. 化工进展, 2024, 43(4): 2126-2134. |
| [2] | 单书月, 罗中秋, 周新涛, 尚波, 田鑫聪, 阎崔蓉. 钢渣构筑Fe-CSH吸附溶液中Pb(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)性能及机理[J]. 化工进展, 2024, 43(10): 5867-5880. |
| [3] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
| [4] | 王书燕, 张新波, 彭安萍, 刘阳, NGO HUU HAO, 郭文珊, 温海涛. 生物炭回收水中氮磷营养物质的研究进展与挑战[J]. 化工进展, 2023, 42(10): 5459-5469. |
| [5] | 王妍, 秦振平, 刘越, 张文海, 郭红霞. 环糊精原位改性MoS2管式陶瓷复合膜的制备及性能[J]. 化工进展, 2023, 42(10): 5373-5380. |
| [6] | 周硕林, 赖金花, 游高林, 刘贤响, 尹笃林. 水热法制备质子化钛纳米管的影响因素及其应用研究进展[J]. 化工进展, 2021, 40(7): 3791-3802. |
| [7] | 刘蜀疆, 陈占营, 赵永刚, 常印忠. 氙常温吸附性能与多孔碳材料孔径分布关联分析[J]. 化工进展, 2020, 39(S2): 243-250. |
| [8] | 张凯, 韦秀丽, 王冰, 蒋滔, 刘科. Fe3O4改性水热炭活化过硫酸钠降解罗丹明B[J]. 化工进展, 2020, 39(7): 2867-2875. |
| [9] | 闫茜, 谢谚, 盛学佳, 周志国, 杨洋洋, 王昕喆, 曲聪, 张福良. 超疏水纳米海绵制备及其二甲苯吸附性能[J]. 化工进展, 2020, 39(10): 4095-4101. |
| [10] | 刘德钱,解强,万超然,邓锋,黄小晴,翟笑迪. 活性炭配炭的吸附性能及其与孔结构的关系[J]. 化工进展, 2019, 38(12): 5578-5586. |
| [11] | 庄晓东,李荣兴,俞小花,谢刚,和晓才,徐庆鑫. 钛酸锂/石墨烯复合材料及电化学性能[J]. 化工进展, 2019, 38(10): 4659-4665. |
| [12] | 洪碧云, 唐丽荣, 陈伟香, 黄彪. 碱木质素/聚乙烯亚胺碳点的制备及其对pH敏感性[J]. 化工进展, 2019, 38(04): 1970-1977. |
| [13] | 朱赫男, 王志朴, 邢文龙, 舒新前. 污泥与生物质共热解制备生物质炭工艺优化及吸附性能[J]. 化工进展, 2018, 37(S1): 199-204. |
| [14] | 冯艳艳, 黄宏斌, 杨文, 赖国勇, 赵文君. 镍钴双金属氢氧化物/乙炔黑复合材料的制备及其电化学性能[J]. 化工进展, 2018, 37(11): 4378-4383. |
| [15] | 董道敏, 刘宾, 柴永明, 吴仪岚, 刘晨光. 动态水热法制备Silicalite-1分子筛膜包覆多孔缺陷Al2O3微球[J]. 化工进展, 2018, 37(10): 3943-3948. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |