化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3072-3083.DOI: 10.16085/j.issn.1000-6613.2024-1357
• 专栏:化工生态环境前沿交叉新技术 • 上一篇
收稿日期:2024-08-19
修回日期:2024-11-12
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
王雅君
作者简介:王宇婷(1990—),女,讲师,研究方向为光催化、光电催化、纳米材料合成。E-mail:wangyt@cup.edu.cn。
基金资助:
WANG Yuting(
), WANG Mengxiang, LI Wenwen, LI Gang, WANG Yajun(
)
Received:2024-08-19
Revised:2024-11-12
Online:2025-06-25
Published:2025-07-08
Contact:
WANG Yajun
摘要:
通过热收缩聚合浸渍法合成了不同质量分数的铁基氮缺陷三维氮化碳催化剂[Fe(Ⅲ)/3D CN-Nv],构建了光催化与Fenton技术耦合的光催化自Fenton体系,用于高效降解难处理的盐酸四环素污染物。结果表明,在可见光照射下,1.5% Fe(Ⅲ)/3D CN-Nv催化剂在60min内实现了75.8%的去除率,是bulk g-C3N4的6倍,较未浸渍Fe(Ⅲ)催化剂高1.8倍。性能提升主要归因于Fe-N键的形成,促进了Fe3⁺/Fe2⁺的电子转移,提高了光生电子的分离效率。此外,该体系在可见光下原位生成H2O2,并与Fe2⁺反应生成·OH,实现高效降解。通过优化pH及Fe负载量,确定了最佳反应条件,并明确了主要活性物种。该催化剂体系在环境污染治理中展现出广阔的应用前景。
中图分类号:
王宇婷, 王梦祥, 李文文, 李港, 王雅君. Fe(Ⅲ)/3D氮化碳共轭体系光芬顿协同降解四环素[J]. 化工进展, 2025, 44(6): 3072-3083.
WANG Yuting, WANG Mengxiang, LI Wenwen, LI Gang, WANG Yajun. Photo-Fenton synergistic degradation of tetracycline by Fe(Ⅲ)/3D conjugated carbon nitride system[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3072-3083.
图1 bulk g-C3N4(a)、3D g-C3N4-Nv(b)及1.5% Fe(Ⅲ)/3D CN-Nv(c)的SEM图片;bulk g-C3N4(d)、3D g-C3N4-Nv(e)及1.5% Fe(Ⅲ)/3D CN-Nv(f)的TEM图片;1.5% Fe(Ⅲ)/3D CN-Nv(g)的TEM的元素映射(EDX)图
| 催化剂 | 比表面积/m2∙g-1 | 孔体积/cm3∙g-1 | 平均孔径/nm |
|---|---|---|---|
| bulk g-C3N4 | 13.5 | 0.09 | 38.7 |
| 3D g-C3N4-Nv | 49.0 | 0.19 | 19.4 |
| 3D g-C3N4-Nv/0.5% Fe3+ | 77.4 | 0.50 | 29.4 |
| 3D g-C3N4-Nv/1% Fe3+ | 70.7 | 0.42 | 27.0 |
| 3D g-C3N4-Nv/1.5% Fe3+ | 61.1 | 0.39 | 29.3 |
| 3D g-C3N4-Nv/2% Fe3+ | 59.4 | 0.38 | 29.5 |
表1 块状g-C3N4、3D g-C3N4-Nv和Fe(Ⅲ)/3D CN-Nv的BET测试比表面积、孔体积和平均孔径
| 催化剂 | 比表面积/m2∙g-1 | 孔体积/cm3∙g-1 | 平均孔径/nm |
|---|---|---|---|
| bulk g-C3N4 | 13.5 | 0.09 | 38.7 |
| 3D g-C3N4-Nv | 49.0 | 0.19 | 19.4 |
| 3D g-C3N4-Nv/0.5% Fe3+ | 77.4 | 0.50 | 29.4 |
| 3D g-C3N4-Nv/1% Fe3+ | 70.7 | 0.42 | 27.0 |
| 3D g-C3N4-Nv/1.5% Fe3+ | 61.1 | 0.39 | 29.3 |
| 3D g-C3N4-Nv/2% Fe3+ | 59.4 | 0.38 | 29.5 |
图4 块状g-C3N4、3D g-C3N4-Nv和Fe(Ⅲ)/3D CN-Nv在可见光照射(λ≥420nm)下对盐酸四环素的吸附降解曲线(a)及ln(C/C0)与时间t的线性回归曲线(b);1.5% Fe(Ⅲ)/3D CN-Nv在不同pH下对盐酸四环素的吸附降解曲线(c)及ln(C/C0)与时间t的线性回归曲线(d);盐酸四环素降解的循环稳定性实验(e);降解反应前后1.5% Fe(Ⅲ)/3D CN-Nv的XRD对比(f)
| 催化剂 | B1/% | B2/% | τ1/ns | τ2/ns | Ave. τ/ns |
|---|---|---|---|---|---|
| bulk g-C3N4 | 62.95 | 37.05 | 2.12 | 14.03 | 11.60 |
| 3D g-C3N4-Nv | 48.28 | 51.72 | 2.97 | 19.92 | 17.85 |
| 3D g-C3N4-Nv/0.5%Fe | 45.32 | 50.48 | 3.08 | 20.29 | 18.23 |
| 3D g-C3N4-Nv/1.0%Fe | 47.15 | 51.32 | 3.21 | 20.58 | 18.40 |
| 3D g-C3N4-Nv/1.5%Fe | 48.81 | 51.19 | 3.20 | 20.70 | 18.45 |
| 3D g-C3N4-Nv/2.0%Fe | 46.53 | 52.29 | 3.17 | 19.97 | 17.89 |
表2 bulk g-C3N4, 3D g-C3N4-Nv 和不同Fe(Ⅲ)掺杂量的Fe(Ⅲ)/3D CN-Nv催化剂的平均荧光寿命
| 催化剂 | B1/% | B2/% | τ1/ns | τ2/ns | Ave. τ/ns |
|---|---|---|---|---|---|
| bulk g-C3N4 | 62.95 | 37.05 | 2.12 | 14.03 | 11.60 |
| 3D g-C3N4-Nv | 48.28 | 51.72 | 2.97 | 19.92 | 17.85 |
| 3D g-C3N4-Nv/0.5%Fe | 45.32 | 50.48 | 3.08 | 20.29 | 18.23 |
| 3D g-C3N4-Nv/1.0%Fe | 47.15 | 51.32 | 3.21 | 20.58 | 18.40 |
| 3D g-C3N4-Nv/1.5%Fe | 48.81 | 51.19 | 3.20 | 20.70 | 18.45 |
| 3D g-C3N4-Nv/2.0%Fe | 46.53 | 52.29 | 3.17 | 19.97 | 17.89 |
图6 在可见光(λ≥420nm)照射5min下3D g-C3N4-Nv和1.5% Fe(Ⅲ)/3D CN-Nv溶液中DMPO-·OH的ESR谱(a);1.5% Fe(Ⅲ)/3D CN-Nv在暗光和光照条件下DMPO-·OH的ESR谱(b);可见光(λ≥420nm)照射5min下3D g-C3N4-Nv和1.5% Fe(Ⅲ)/3D CN-Nv溶液中TEMP-1O2(c)与DMPO-·O2-(d)的ESR谱;可见光(λ≥420nm)下1.5% Fe(Ⅲ)/3D CN-Nv在不添加任何捕捉剂、添加糠醇(FFA)、叔丁醇(TBA)或乙二胺四乙酸(EDTA)时对盐酸四环素的光催化性能比较(e)
| [1] | 于晓雯, 索全义. 畜禽粪便中四环素类抗生素的残留及危害[J]. 北方农业学报, 2018, 46(3): 83-88. |
| YU Xiaowen, SUO Quanyi. Residues and hazards of tetracycline antibiotics in livestock and poultry manure[J]. Journal of Northern Agriculture, 2018, 46(3): 83-88. | |
| [2] | 石浩, 蔡柏岩. 四环素类抗生素胁迫下土壤细菌菌群响应机制的研究进展[J]. 环境污染与防治, 2024, 46(7): 1028-1034. |
| SHI Hao, CAI Baiyan. Research progress on response mechanisms of soil bacterial flora under tetracycline antibiotics stress[J]. Environmental Pollution & Control, 2024, 46(7): 1028-1034. | |
| [3] | 谢晋, 陈小飞, 张敏敏, 等. 水中四环素类抗生素的污染现状及其去除技术研究进展[J]. 环保科技, 2024, 30(2): 60-64. |
| XIE Jin, CHEN Xiaofei, ZHANG Minmin, et al. Research progress in pollution status and removal technology for tetracycline antibiotics in water[J]. Environmental Protection and Technology, 2024, 30(2): 60-64. | |
| [4] | 天津农学院. AEO-7酞菁铁催化降解四环素的方法及应用: CN202310377238.5[P]. 2023-06-30. |
| Tianjin Agricultural University. Method and application of catalytic degradation of tetracycline by AEO-7 phthalocyanine iron: CN202310377238.5[P]. 2023-06-30. | |
| [5] | 西安建筑科技大学. 豆渣负载铁铜催化材料、 制备方法及降解四环素的方法: CN202311535367.9[P]. 2024-03-19. |
| Xi’an University of Architecture and Technology. Soybean dregs loaded iron-copper catalytic materials, preparation method and degradation method of tetracycline: CN202311535367.9[P]. 2024-03-19. | |
| [6] | 李玲玲, 黄利东, 霍嘉恒, 等. 土壤和堆肥中四环素类抗生素的检测方法优化及其在土壤中的降解研究[J]. 植物营养与肥料学报, 2010, 16(5): 1176-1182. |
| LI Lingling, HUANG Lidong, HUO Jiaheng, et al. Method optimization for determination of tetracyclines in soils and compost and their degradation in soils[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1176-1182. | |
| [7] | 高婉茹, 李跑, 黄昭, 等. 磁性分子印迹纳米粒子对四环素的富集分离[J]. 食品研究与开发, 2019, 40(24): 1-5. |
| GAO Wanru, LI Pao, HUANG Zhao, et al. Enrichment and separation of tetracycline by magnetic molecularly imprinted polymers nanoparticles[J]. Food Research and Development, 2019, 40(24): 1-5. | |
| [8] | 李微, 宁雨阳, 刘宁, 等. PEO基MOFs杂化泡沫材料对四环素和Cu2+吸附性能[J]. 环境工程, 2023, 41(7): 76-85. |
| LI Wei, NING Yuyang, LIU Ning, et al. Adsorption performance of peo-based MOFs hybrid foam materials on tetracycline and Cu2+ [J]. Environmental Engineering, 2023, 41(7): 76-85. | |
| [9] | 唐文元, 兰贵红, 邱海燕, 等. 磁性氧化锆复合材料对水中四环素的吸附[J]. 山东化工, 2022, 51(5): 5-10. |
| TANG Wenyuan, LAN Guihong, QIU Haiyan, et al. Preparation of magnetic zirconium dioxide composites and its adsorption for tetracycline in water[J]. Shandong Chemical Industry, 2022, 51(5): 5-10. | |
| [10] | 朱斌, 钟理. 高级氧化技术降解水中环境激素的研究进展[J]. 工业水处理, 2008, 28(1): 5-8. |
| ZHU Bin, ZHONG Li. Progress of the degradation of environmental hormone in water by advanced oxidation technologies[J]. Industrial Water Treatment, 2008, 28(1): 5-8. | |
| [11] | 叶林静, 关卫省, 李宇亮. 高级氧化技术降解双酚A的研究进展[J]. 化工进展, 2013, 32(4): 909-918. |
| YE Linjing, GUAN Weisheng, LI Yuliang. Research advances in bisphenol A degraded by advanced oxidation processes[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 909-918. | |
| [12] | 杨直渝, 朱科, 许镇浩, 等. 基于过硫酸盐高级氧化技术降解抗生素的研究进展[J]. 能源环境保护, 2023, 37(5): 1-14. |
| YANG Zhiyu, ZHU Ke, XU Zhenhao, et al. Research advance on the degradation of antibiotics through advanced oxidation technology using persulfate[J]. Energy Environmental Protection, 2023, 37(5): 1-14. | |
| [13] | 田蒙奎, 尚百伟, 陶文亮. 光催化高级氧化与无机陶瓷膜分离技术耦合的研究[J]. 环境污染与防治, 2012, 34(11): 40-44. |
| TIAN Mengkui, SHANG Baiwei, TAO Wenliang. Study on the coupling of photocatalytic advanced oxidation process with inorganic membrane separation technology[J]. Environmental Pollution & Control, 2012, 34(11): 40-44. | |
| [14] | 周安然, 王永磊, 孙韶华, 等. 膜过滤耦合高级氧化技术去除水中抗生素的研究进展[J]. 膜科学与技术, 2019, 39(1): 110-115. |
| ZHOU Anran, WANG Yonglei, SUN Shaohua, et al. Removal of antibiotic in water by the coupling technique of membrane separation and advanced oxidation techniques(AOPs)—A review[J]. Membrane Science and Technology, 2019, 39(1): 110-115. | |
| [15] | 宋思扬, 赵焕新. 铁基催化剂应用于非均相光芬顿技术的研究进展[J]. 当代化工研究, 2019(3): 183-184. |
| SONG Siyang, ZHAO Huanxin. Research progress in application of iron-based catalysts to heterogeneous photo Fenton technology[J]. Modern Chemical Research, 2019(3): 183-184. | |
| [16] | SHAFAQ Sahar, AKIF Zeb, 刘亚男, 等. Fe3O4/g-C3N4复合催化剂增强芬顿/光-芬顿和类过氧化酶反应的活性及稳定性[J]. 催化学报, 2017, 38(12): 2110-2119. |
| SHAFAQ Sahar, AKIF Zeb, LIU Yanan, et al. Fe3O4/g-C3N4 composite catalyst enhances the activity and stability of Fenton/peroxy-Fenton and pseudo-peroxidase reactions[J]. Chinese Journal of Catalysis, 2017, 38(12): 2110-2119. | |
| [17] | 朱欢欢, 孙韶华, 冯桂学, 等. 紫外联用高级氧化技术处理饮用水应用进展[J]. 水处理技术, 2019, 45(3): 1-7. |
| ZHU Huanhuan, SUN Shaohua, FENG Guixue, et al. Research progress of ultraviolet combined advanced oxidation technology for drinking water treatment[J]. Technology of Water Treatment, 2019, 45(3): 1-7. | |
| [18] | REYES C, FERNÁNDEZ J, FREER J, et al. Degradation and inactivation of tetracycline by TiO2 photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(1/2): 141-146. |
| [19] | 郝琪, 苏斌. 类芬顿技术降解四环素研究进展[J]. 当代化工研究, 2023(16): 1-6. |
| HAO Qi, SU Bin. Research progress of Fenton-like technology for degradation of tetracycline[J]. Modern Chemical Research, 2023(16): 1-6. | |
| [20] | 周晓岚, 陈超强, 李炜敏, 等. 芬顿技术处理水中难降解有机污染物的研究进展[J]. 山东化工, 2024, 53(1): 262-264. |
| ZHOU Xiaolan, CHEN Chaoqiang, LI Weimin, et al. Research progress of Fenton technology for treatment of pollutants in water[J]. Shandong Chemical Industry, 2024, 53(1): 262-264. | |
| [21] | PANNERI Suyana, GANGULY Priyanka, NAIR Balagopal N, et al. Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation[J]. Environmental Science and Pollution Research, 2017, 24(9): 8609-8618. |
| [22] | THOMAS Arne, FISCHER Anna, GOETTMANN Frederic, et al. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908. |
| [23] | FAN Xiangqian, XING Zheng, SHU Zhu, et al. Improved photocatalytic activity of g-C3N4 derived from cyanamide-urea solution[J]. RSC Advances, 2015, 5(11): 8323-8328. |
| [24] | DONG Fan, ZHAO Zaiwang, XIONG Ting, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11392-11401. |
| [25] | REN Haitao, JIA Shaoyi, WU Yan, et al. Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light[J]. Industrial & Engineering Chemistry Research, 2014, 53(45): 17645-17653. |
| [26] | YE Sheng, WANG Rong, WU Mingzai, et al. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction[J]. Applied Surface Science, 2015, 358: 15-27. |
| [27] | 姜鹏程, 王周福, 王玺堂, 等. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053. |
| JIANG Pengcheng, WANG Zhoufu, WANG Xitang, et al. Synthesis of graphite-like carbon nitride in different atmospheres and its thermal stability[J]. Materials Reports, 2021, 35(6): 6048-6053. | |
| [28] | WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
| [29] | WANG Jiangpeng, LI Changqing, CONG Jingkun, et al. Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance[J]. Journal of Solid State Chemistry, 2016, 238: 246-251. |
| [30] | SHIRAISHI Yasuhiro, KOFUJI Yusuke, SAKAMOTO Hirokatsu, et al. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation[J]. ACS Catalysis, 2015, 5(5): 3058-3066. |
| [31] | Honghui OU, YANG Pengju, LIN Lihua, et al. Carbon nitride aerogels for the photoredox conversion of water[J]. Angewandte Chemie International Edition, 2017, 56(36): 10905-10910. |
| [32] | 葛玉杰, 吴姣, 王国华, 等. 多孔石墨相氮化碳的制备及对U(Ⅵ)的吸附机理研究[J]. 原子能科学技术, 2021, 55(4): 603-611. |
| GE Yujie, WU Jiao, WANG Guohua, et al. Preparation of porous graphite phase carbon nitride and its adsorption property for U(Ⅵ)[J]. Atomic Energy Science and Technology, 2021, 55(4): 603-611. | |
| [33] | 巩正奇, 闫楚璇, 宣之易, 等. 制备类石墨相氮化碳多孔光催化剂的模板法发展[J]. 工程科学学报, 2021, 43(3): 345-354. |
| GONG Zhengqi, YAN Chuxuan, XUAN Zhiyi, et al. Development of template methods for the preparation of porous photocatalysts of graphite-like carbon nitride[J]. Chinese Journal of Engineering, 2021, 43(3): 345-354. | |
| [34] | 侯建华, 蔡瑞, 沈明, 等. 多孔纳米片状石墨相氮化碳的制备及其可见光催化[J]. 无机化学学报, 2018, 34(3): 467-474. |
| HOU Jianhua, CAI Rui, SHEN Ming, et al. Preparation and visible light photocatalysis of porous nanosheet graphitic carbon nitride[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(3): 467-474. | |
| [35] | 李嗣扬, 曹仲, 申文娟, 等. Fe1- x S-BC/g-C3N4的制备及其光芬顿降解盐酸四环素的性能[J]. 环境化学, 2023, 42(12): 4442-4452. |
| LI Siyang, CAO Zhong, SHEN Wenjuan, et al. Fabrication of Fe1- x S-BC/g-C3N4 and its heterogeneous photo-Fenton degradation effect of tetracycline hydrochloride[J]. Environmental Chemistry, 2023, 42(12): 4442-4452. | |
| [36] | 杨在卿, 倪晓玺, 孙亚鑫, 等. CdS/Fe2S3复合物的制备及其光芬顿催化降解环丙沙星[J]. 山东化工, 2023, 52(17): 15-17. |
| YANG Zaiqing, NI Xiaoxi, SUN Yaxin, et al. Preparation of Fe-CdS and photo-Fenton catalytic degradation of ciprofloxacin[J]. Shandong Chemical Industry, 2023, 52(17): 15-17. | |
| [37] | 郭威. 光催化协同Fenton技术有效降解水中有机污染物的应用研究进展[J]. 山西化工, 2024, 44(6): 42-44. |
| GUO Wei. Research progress of photocatalysis-Fenton system for efficient degradation of organic pollutants[J]. Shanxi Chemical Industry, 2024, 44(6): 42-44. | |
| [38] | 陈顺通, 王欢, 崔文权. 铁掺杂硫化铋光芬顿降解有机污染物[J]. 分子催化(中英文), 2024, 38(1): 17-25. |
| CHEN Shuntong, WANG Huan, CUI Wenquan. Iron-doped bismuth sulfide PhotoFenton degrades organic pollutants[J]. Journal of Molecular Catalysis (China), 2024, 38(1): 17-25. | |
| [39] | 李涛, 王华, 徐佳军, 等. MIL-100(Fe)光芬顿催化剂的制备与循环使用研究[J]. 功能材料, 2024, 55(5): 5147-5151. |
| LI Tao, WANG Hua, XU Jiajun, et al. Preparation of MIL-100(Fe) photo-Fenton catalysts and their recyclability[J]. Journal of Functional Materials, 2024, 55(5): 5147-5151. | |
| [40] | 游小银, 汪楚乔, 刘才华, 等. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296. |
| YOU Xiaoyin, WANG Chuqiao, LIU Caicai, et al. Construction of Z type CN/NGBO/BV catalyst system and its photoFenton degradation performance of tetracycline[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296. |
| [1] | 石秀顶, 王永全, 曾静, 苏畅, 洪俊明. 纳米管状Co-N-C活化过碳酸盐降解四环素[J]. 化工进展, 2025, 44(6): 3041-3052. |
| [2] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [3] | 赵丽阳, 李倩, 何佩熹, 潘鸿辉, 刘艳, 刘细祥. 磷钼酸-Fe3O4球磨共改性污泥基生物炭对四环素的吸附特性[J]. 化工进展, 2025, 44(1): 583-595. |
| [4] | 游小银, 汪楚乔, 刘才华, 彭小明. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296. |
| [5] | 付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
| [6] | 罗臻, 王庆吉, 王占生, 杨雪莹, 谢加才, 王浩. 炼化污染场地抽出水强氧化短程处理工艺[J]. 化工进展, 2024, 43(7): 4155-4163. |
| [7] | 石家汀, 王辉, 蒲凯凯, 赵婷, 聂丽君, 郑娜, 高宇航, 薛坤坤, 石建惠. 具有碳空位超薄g-C3N4纳米片可见光下产过氧化氢[J]. 化工进展, 2024, 43(7): 4148-4154. |
| [8] | 刘梦凡, 王华伟, 王亚楠, 张艳茹, 蒋旭彤, 孙英杰. Bio-FeMnCeO x 活化PMS降解四环素效能与机制[J]. 化工进展, 2024, 43(6): 3492-3502. |
| [9] | 肖自胜, 李金玲, 陈伊睿, 兰支利, 尹笃林. g-C3N4锚定Cu(Ⅰ)高选择性催化CCl4合成2,4,4,4-四氯丁腈[J]. 化工进展, 2024, 43(6): 3293-3300. |
| [10] | 曾湘楚, 莫镇榕, 银秀菊, 武哲. N、S共掺杂磁性生物炭对水体Cu(Ⅱ)和四环素的协同吸附机制[J]. 化工进展, 2024, 43(12): 7004-7017. |
| [11] | 马香港, 丁远, 张俊格, 刘应良, 徐慎刚, 曹少魁. 改性g-C3N4光催化降解双酚A的研究进展[J]. 化工进展, 2024, 43(11): 6271-6292. |
| [12] | 徐诗琪, 朱颖, 陈宁华, 陆彩妹, 江露莹, 王俊辉, 覃岳隆, 张寒冰. 环境因素对水体中四环素光催化降解行为的影响[J]. 化工进展, 2024, 43(1): 551-559. |
| [13] | 刘飞, 陈哲, 陈峰. 氮化碳接枝L-谷氨酰胺分子实现高效光催化产氢和降解性能[J]. 化工进展, 2023, 42(12): 6372-6382. |
| [14] | 柯玉鑫, 朱晓丽, 司绍诚, 张婷, 王军强, 张子夜. 废白土衍生吸附剂协同去除水中的四环素和铜[J]. 化工进展, 2023, 42(11): 5981-5992. |
| [15] | 宋亚丽, 李紫燕, 杨彩荣, 黄龙, 张宏忠. 非金属元素掺杂石墨相氮化碳光催化材料的研究进展[J]. 化工进展, 2023, 42(10): 5299-5309. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |