1 |
WATSON Peter, BONNIEU Sebastien Vincent, LAPPA Marcello. Fluidization and transport of vibrated granular matter: A review of landmark and recent contributions[J]. Fluid Dynamics & Materials Processing, 2024, 20(1): 1-29.
|
2 |
ZHANG Kai, ZHONG Huajia, KOU Farong, et al. Does cavity dimension of vibrated granular container matter?[J]. Granular Matter, 2023, 25(1): 11.
|
3 |
于天林, 凡凤仙. 竖直振动激励下颗粒毛细上升行为研究[J]. 物理学报, 2022, 71(10): 104501.
|
|
YU Tianlin, FAN Fengxian. Investigation of granular capillary rising under vertical vibration[J]. Acta Physica Sinica, 2022, 71(10): 104501.
|
4 |
郭宇, 凡凤仙, 白鹏博, 等. 颗粒物质在竖直振动U形管中迁移的离散元方法模拟[J]. 上海理工大学学报, 2019, 41(5): 409-416.
|
|
GUO Yu, FAN Fengxian, BAI Pengbo, et al. Discrete element method simulation on the immigration of granular matter in a vertically vibrating U-tube[J]. Journal of University of Shanghai for Science and Technology, 2019, 41(5): 409-416.
|
5 |
刘举, 白鹏博, 凡凤仙, 等. 竖直振动下颗粒物质的行为模式研究进展[J]. 化工进展, 2016, 35(7): 1956-1962.
|
|
LIU Ju, BAI Pengbo, FAN Fengxian, et al. Research progress on behavior mode of granular matter under vertical vibration[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 1956-1962.
|
6 |
GUTMAN R G. Vibrated beds of powders. Part Ⅰ: A theoretical model for the vibrated bed[J]. Transactions of the Institution of Chemical Engineers, 1976, 54(3): 174-183.
|
7 |
RAJCHENBACH J. Dilatant process for convective motion in a sand heap[J]. Europhysics Letters (EPL), 1991, 16(2): 149-152.
|
8 |
CHUNG Fei Fang, LIAW Sy-Sang. Phase transition induced symmetry breaking in granular materials[J]. Granular Matter, 2013, 15(1): 57-63.
|
9 |
Ivan SÁNCHEZ, DARIAS José Ramón, PAREDES Ricardo, et al. Vertical granular transport in a vibrated U-tube[C]//APPERT-ROLLAND C, CHEVOIR F, GONDRET P, et al. Traffic and granular flow’07. Berlin, Heidelberg: Springer, 2009: 545-554.
|
10 |
DARIAS J R, SÁNCHEZ I, GUTIÉRREZ G. Experimental study on the vertical motion of grains in a vibrated U-tube[J]. Granular Matter, 2011, 13(1): 13-17.
|
11 |
PÉREZ B, SÁNCHEZ I. Effect of friction on the granular U-tube instability[J]. Mechanics Research Communications, 2011, 38(3): 244-248.
|
12 |
DARIAS J R, SÁNCHEZ I, GUTIÉRREZ G, et al. Study of the accumulation of grains in a two dimensional vibrated U-tube without interstitial fluid[J]. Advanced Powder Technology, 2013, 24(6): 1095-1099.
|
13 |
Iván SÁNCHEZ, DÍAZ Alberto A, GUERRERO Bruno, et al. Improved model for the U-tube granular instability: Analytical solution and delayed coupling[J]. Mechanics Research Communications, 2015, 67: 1-7.
|
14 |
KING P J, LOPEZ-ALCARAZ P, PACHECO-MARTINEZ H A, et al. Instabilities in vertically vibrated fluid-grain systems[J]. The European Physical Journal E, Soft Matter, 2007, 22(3): 219-226.
|
15 |
OHTSUKI Toshiya, KINOSHITA Daisuke, NAKADA Yasushi, et al. Surface level migration in vibrating beds of cohesionless granular materials[J]. Physical Review E, 1998, 58(6): 7650-7656.
|
16 |
AKIYAMA Tetsuo, SHINMURA Kyoko, MURAKAWA Shuichi, et al. A surface instability of granules under vibration in partitioned containers[J]. Granular Matter, 2001, 3(3): 177-183.
|
17 |
KLOSS Christoph, GONIVA Christoph, HAGER Alice, et al. Models, algorithms and validation for opensource DEM and CFD-DEM[J]. Progress in Computational Fluid Dynamics: An International Journal, 2012, 12(2/3): 140.
|
18 |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
|
19 |
ZHANG Shuai, GE Wei. Accelerating discrete particle simulation of particle-fluid systems[J]. Current Opinion in Chemical Engineering, 2024, 43: 100989.
|
20 |
JAYASUNDARA C T, ZHU H P. Predicting liner wear of ball mills using discrete element method and artificial neural network[J]. Chemical Engineering Research and Design, 2022, 182: 438-447.
|
21 |
BRILLIANTOV Nikolai V, SPAHN Frank, HERTZSCH Jan-Martin, et al. Model for collisions in granular gases[J]. Physical Review E, 1996, 53(5): 5382-5392.
|
22 |
Patric MÜLLER, Thorsten PÖSCHEL. Collision of viscoelastic spheres: Compact expressions for the coefficient of normal restitution[J]. Physical Review E, 2011, 84(2): 021302.
|
23 |
AI Jun, CHEN Jianfei, Michael ROTTER J, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3): 269-282.
|