化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3647-3659.DOI: 10.16085/j.issn.1000-6613.2024-0043
• 专栏:热化学反应工程技术 • 上一篇
李亚伟1(), 韩兵强1(), 鄢文2, 黄奥2, 刘浩1, 朱天彬2, 廖宁2, 陈俊峰1, 徐义彪2
收稿日期:
2024-01-08
修回日期:
2024-03-21
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
韩兵强
作者简介:
李亚伟(1966—),男,博士,教授,研究方向为耐火材料。E-mail:liyawei@wust.edu.cn。
LI Yawei1(), HAN Bingqiang1(), YAN Wen2, HUANG Ao2, LIU Hao1, ZHU Tianbin2, LIAO Ning2, CHEN Junfeng1, XU Yibiao2
Received:
2024-01-08
Revised:
2024-03-21
Online:
2024-07-10
Published:
2024-08-14
Contact:
HAN Bingqiang
摘要:
高温工业的发展,与耐火材料的发展密切相关,其技术进步无一例外地都依赖于优质耐火材料的研发。耐火材料在制备及应用过程中,都和热化学反应息息相关。本文首先简要介绍了耐火材料的发展历程,其次以二氧化硅质、莫来石质耐火材料为例,介绍了上述耐火材料制备中的热化学反应过程;以莫来石-碳化硅、方镁石-尖晶石、镁碳质耐火材料为例,介绍了上述耐火材料在服役过程中的热化学侵蚀反应行为,并给出了热化学模拟在耐火材料与熔渣/气相反应中的应用情况;以氧化铝-碳质过滤器为例,介绍了其应用过程中的吸附夹杂机理。最后介绍了常用的耐火材料煅烧设备。
中图分类号:
李亚伟, 韩兵强, 鄢文, 黄奥, 刘浩, 朱天彬, 廖宁, 陈俊峰, 徐义彪. 耐火材料热化学反应典型应用技术发展[J]. 化工进展, 2024, 43(7): 3647-3659.
LI Yawei, HAN Bingqiang, YAN Wen, HUANG Ao, LIU Hao, ZHU Tianbin, LIAO Ning, CHEN Junfeng, XU Yibiao. Typical applications of thermochemical reactions in refractory[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3647-3659.
1 | 李楠,顾华志,赵惠忠. 耐火材料学[M]. 2版. 北京: 冶金工业出版社,2022. |
LI Nan, GU Huazhi, ZHAO Huizhong. Refractory science[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2022. | |
2 | 杉田清. 钢铁用耐火材料: 向高温挑战的记录[M]. 北京: 冶金工业出版社, 2004. |
KIYOSHI SUGITA. Refractory materials for iron and steel: Record of high temperature challenge[M]. Beijing: Metallurgical Industry Press, 2004. | |
3 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
4 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
5 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
6 | HE Mingyuan, ZHANG Kun, GUAN Yejun, et al. Green carbon science: Fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
7 | 北京钢铁学院《中国冶金简史》编写小组. 中国冶金简史[M]. 北京: 科学出版社, 1978. |
Beijing Institute of Iron and Steel, "A brief history of metallurgy in China" compilation group. A brief history of metallurgy in China[M]. Beijing: Science Press, 1978. | |
8 | 赵青云, 李京华, 韩汝玢, 等. 巩县铁生沟汉代冶铸遗址再探讨[J]. 考古学报, 1985(2): 157-183, 267-270. |
ZHAO Qingyun, LI Jinghua, HAN Rupin, et al. Further exploration of the Han Dynasty smelting and casting site in Tieshenggou, Gongxian[J]. Archaeological Journal, 1985 (2): 157-183, 267-270. | |
9 | 何堂坤, 林育炼, 叶万松, 等. 洛阳坩埚附着钢的初步研究[J]. 自然科学史研究,1985,4(1): 59-63, 100. |
HE Tangkun, LIN Yulian, YE Wansong, et al. A preliminary study of crucible attached steel in Luoyang[J]. Studies in the History of Natural Sciences. 1985, 4(1): 59-63, 100. | |
10 | SARKAR RITWIK. Refractory technology:fundamentals and applications[M]. CRC Press, 2017. |
11 | 宋作人. 玻璃熔窑用熔铸耐火材料[M]. 郑州:河南科学技术出版社,1991. |
SONG Zuoren. Fused cast refractories for glass melting kilns [M]. Zhengzhou: Henan Science and Technology Press, 1991. | |
12 | 郁国城. 碱性耐火材料理论基础[M]. 上海: 上海科学技术出版社, 1982. |
YU Guocheng. Basic refractory's theoretical basis[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1982. | |
13 | 张文杰,李楠. 碳复合耐火材料[M]. 北京: 科学出版社,1990. |
ZHANG Wenjie, Li Nan. Carbon composite refractory[M]. Beijing: Science Press, 1990. | |
14 | 戈福祥, 徐宗涑, 徐廷荃. 四川耐火材料之研究[J]. 工程, 1940, 13(4): 49-96. |
GE Fuxiang, XU Zongsu, XU Tingquan. Research on refractory materials in Sichuan[J]. Engineering, 1940,13(4): 49-96. | |
15 | 谭丙煜. 耐火砖制造的研讨[J]. 湖大工程, 1947(1): 143-153. |
TAN Bingyu. Research on firebrick manufacturing[J]. Hunan University Engineering, 1947(1): 143-153. | |
16 | 钟香崇,李广平. 高铝矾土加热过程的变化和烧结机理,硅酸盐学报,1964(4):261-270. |
ZHONG Xiangchong, LI Guangping. Heat changes and sintering mechanism of Chinese high alumina clays[J]. Journal of the Chinese Ceramic Society, 1964(4): 261-270. | |
17 | 李楠, 梁永和. 李楠耐火材料论文选[M]. 武汉:湖北科学技术出版社,2004. |
LI Nan, LIANG Yonghe. Li Nan Selected Papers on Refractory Materials[M]. Wuhan: Hubei Science and Technology Press, 2004. | |
18 | EDWARDS Howell G M. Porcelain to silica bricks: The extreme ceramics of William Weston Young (1776-1847)[M]. Springer, 2019. |
19 | SARKAR Ritwik. Refractory technology: Fundamentals and applications[M]. CRC Press, 2017. |
20 | FENNER C N. The stability relations of the silica minerals[J]. American Journal of Science, 1913, 36(214): 331-384. |
21 | ROSS D W. Silica Refractories: Factors affecting their quality and methods of testing the raw materials and finished wares[J]. Department of Commerce Technologic Paper of the Bureau of Standards, 1919, 116. |
22 | 郑德胜, 薄钧, 甘菲芳, 等. 高导热硅砖在焦炉上的应用[J]. 耐火材料, 2017, 51(4): 287-288. |
ZHENG Desheng, BO Jun, GAN Feifang, et al. Application of high thermal conductivity silicon brick in coke oven[J]. Naihuo Cailiao. 2017, 51(4): 287-288. | |
23 | NUNES DOS SANTOS Wilson, BALDO João Baptista, TAYLOR Roy. Effect of SiC on the thermal diffusivity of silica-based materials[J]. Materials Research Bulletin, 2000, 35(13): 2091-2100. |
24 | 张会军. 新型矿化剂和添加剂对硅砖性能的影响[D]. 郑州: 郑州大学, 2015. |
ZHANG Huijun. Influence of A new mineralization agent and additives onproperties of silica brick[D]. Zhengzhou: Zhengzhou University, 2015. | |
25 | 练伟. 煤矸石为原料制备莫来石及复相陶瓷的力学性能研究[D]. 淮南: 安徽理工大学, 2021. |
LIAN Wei. Mechanical properties of mullite and multiphase ceramics prepared from coal gangue[D]. Huainan: Anhui University of Science & Technology, 2021. | |
26 | 王章. 煤系高岭土制备多孔莫来石工艺、组织和性能的研究[D]. 徐州: 中国矿业大学, 2017. |
WANG Zhang. Study on preparation methods, microstructure and properties of porous mullite from coal-series Kaolin[D]. Xuzhou: China University of Mining and Technology, 2017. | |
27 | 崔 等. 煤系高岭土高温煅烧单晶相莫来石产品的工艺条件[J]. 耐火材料, 2011, 45(3): 197-199. |
CUI Deng. High temperature calcining process of coal series kaolin preparing single crystal mullite[J]. Naihuo Cailiao, 2011, 45(3): 197-199. | |
28 | REN Bo, LI Yawei, JIN Shengli, et al. Correlation between chemical composition and alkali attack resistance of bauxite-SiC refractories in cement rotary kiln[J]. Ceramics International, 2017, 43(16): 14161-14167. |
29 | KOSAJAN Vorada, WEN Zongguo, ZHENG Kaifang, et al. Municipal solid waste (MSW) co-processing in cement kiln to relieve China's Msw treatment capacity pressure[J]. Resources, Conservation and Recycling, 2021, 167: 105384. |
30 | REN Bo, SANG Shaobai, LI Yawei, et al. Correlation of pore structure and alkali vapor attack resistance of bauxite-SiC composite refractories[J]. Ceramics International, 2015, 41(10): 14674-14683. |
31 | WANG Dong, LI Yong, LI Yang, et al. Optimizing performance of magnesia-spinel brick used at cement rotary kiln[J]. Advanced Materials Research, 2011, 250/251/252/253: 588-594. |
32 | HONG Shan shan, LI Yong. Investigation on the creep property of theoretical composition magnesia alumina spinel bricks[J]. Advanced Materials Research, 2013, 690/691/692/693: 654-657. |
33 | LIN Xiaoli, YAN Wen, MA Sanbao, et al. Corrosion and adherence properties of cement clinker on porous periclase-spinel refractory aggregates with varying spinel content[J]. Ceramics International, 2017, 43(6): 4984-4991. |
34 | MA Sanbao, YAN Wen, Stefan SCHAFFÖNER, et al. Influence of magnesium aluminate spinel powder content on cement clinker corrosion and adherence properties of lightweight periclase-spinel refractories[J]. Ceramics International, 2017, 43(18): 17026-17031. |
35 | WU Guiyuan, YAN Wen, Stefan SCHAFFÖNER, et al. Effect of magnesium aluminate spinel content of porous aggregates on cement clinker corrosion and adherence properties of lightweight periclase-spinel refractories[J]. Construction and Building Materials, 2018, 185: 102-109. |
36 | WU Guiyuan, YAN Wen, Stefan SCHAFFÖNER, et al. A comparative study on the microstructures and mechanical properties of a dense and a lightweight magnesia refractories[J]. Journal of Alloys and Compounds, 2019, 796: 131-137. |
37 | EWAIS Emad Mohamed M. Carbon based refractories[J]. Journal of the Ceramic Society of Japan, 2004, 112(1310): 517-532. |
38 | LUZ A P, LEITE F C, BRITO M A M, et al. Slag conditioning effects on MgO-C refractory corrosion performance[J]. Ceramics International, 2013, 39(7): 7507-7515. |
39 | 朱天彬, 李亚伟, 桑绍柏, 等. 镁碳质耐火材料的抗氧化研究进展[J]. 耐火材料, 2013, 47(5): 384-387, 391. |
ZHU Tianbin, LI Yawei, SANG Shaobai, et al. Progress on oxidation resistance of MgO-C refractories[J]. Refractories, 2013, 47(5): 384-387, 391. | |
40 | 周婷, 余俊, 黄学忠, 等. AOD炉渣对MgO-C砖的侵蚀机理研究[J]. 硅酸盐通报, 2023, 42(1): 338-344. |
ZHOU Ting, YU Jun, HUANG Xuezhong, et al. Study on corrosion mechanism of AOD slag on MgO-C brick[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 338-344. | |
41 | ZHANG S, LEE W E. Use of phase diagrams in studies of refractories corrosion[J]. International Materials Reviews, 2000, 45(2): 41-58. |
42 | SI Yaochen, ZHANG Fan, LI Xin, et al. Thermodynamic calculation and microstructure characterization of spinel formation in MgO-Al2O3-C refractories[J]. Ceramics International, 2022, 48(11): 15525-15532. |
43 | CHEN Qilong, ZHU Tianbin, LI Yawei, et al. Enhanced performance of low-carbon MgO-C refractories with nano-sized ZrO2-Al2O3 composite powder[J]. Ceramics International, 2021, 47(14): 20178-20186. |
44 | KIM Yelim, KASHIWAYA Yoshiaki, CHUNG Yongsug. Effect of varying Al2O3 contents of CaO-Al2O3-SiO2 slags on lumped MgO dissolution[J]. Ceramics International, 2020, 46(5): 6205-6211. |
45 | GUO Weijie, ZHU Tianbin, ZHAO Xu, et al. Improved slag corrosion resistance of MgO-C refractories with calcium magnesium aluminate aggregate and silicon carbide: Corrosion behavior and thermodynamic simulation[J]. Journal of the European Ceramic Society, 2024, 44(1): 496-509. |
46 | ANEZIRIS Christos G, DUDCZIG Steffen, EMMEL Marcus, et al. Reactive filters for steel melt filtration[J]. Advanced Engineering Materials, 2013, 15(1/2): 46-59. |
47 | DUDCZIG S, ANEZIRIS C G, EMMEL M, et al. Characterization of carbon-bonded alumina filters with active or reactive coatings in a steel casting simulator[J]. Ceramics International, 2014, 40(10): 16727-16742. |
48 | EMMEL Marcus, ANEZIRIS Christos G, SPONZA Francesco, et al. In situ spinel formation in Al2O3-MgO-C filter materials for steel melt filtration[J]. Ceramics International, 2014, 40(8): 13507-13513. |
49 | LIU Ying, YAN Wen, CHEN Zhe, et al. Preparation of high performance MgO ceramic filter and its interaction with molten steel: Effect of porous MgO powder[J]. Journal of the European Ceramic Society, 2023, 43(8): 3794-3803. |
50 | LIU Ying, YAN Wen, LIU Yu, et al. Effect of α-Al2O3 content on microstructures, mechanical properties and purification efficiency on molten steel of MgO-based filters[J]. Journal of the European Ceramic Society, 2023, 43(14): 6516-6526. |
51 | PENG Wangding, CHEN Zhe, YAN Wen, et al. Microstructure and properties of ceramic filter containing porous MgO coating and its filtration of Al2O3 inclusions in molten steel[J]. Ceramics International, 2024, 50(1): 218-229. |
52 | YAN Wen, CHEN Zhe, LI Guangqiang, et al. Preparation and enhanced mechanical properties of novel Al2O3-C ceramic filter reinforced by microporous powder and SiC whiskers[J]. Journal of the American Ceramic Society, 2024, 107(4): 2725-2737. |
53 | 姜金宁. 耐火材料工业热工过程及设备[M]. 北京: 冶金工业出版社, 1984. |
JIANG Jinning. Thermal process and equipment of refractory industry[M]. Beijing: Metallurgical Industry Press, 1984. | |
54 | 张美杰, 程玉保. 无机非金属材料工业窑炉[M]. 北京: 冶金工业出版社, 2008. |
ZHANG Meijie, CHENG Yubao. Inorganic non-metallic materials industrial kiln[M]. Beijing: Metallurgical Industry Press, 2008. | |
55 | 刘麟瑞, 林彬荫. 工业窑炉用耐火材料手册[M]. 北京: 冶金工业出版社, 2001. |
LIU Linrui, LIN Binyin. Manual of refractories for industrial furnaces[M]. Beijing: Metallurgical Industry Press, 2001. | |
56 | TRINKS W, MAWHINNEY M H, SHANNON R A, et al. Industrial furnaces[M]. Hoboken: Wiley, 2003. |
57 | GUPTA R C. Fuels, furnaces and refractories[J]. Oxford: Pergamon Press, 1977. |
[1] | 宋兴飞, 贾鑫, 安萍, 韩振南, 许光文. 热化学反应工程科学与技术发展与展望[J]. 化工进展, 2024, 43(7): 3513-3533. |
[2] | 王庆泰, 张赛, 王杰敏. 全钒液流电池多孔电极非均匀压缩的数值模拟[J]. 化工进展, 2024, 43(6): 2940-2949. |
[3] | 王东亮, 李婧玮, 孟文亮, 杨勇, 周怀荣, 范宗良. 二氧化碳加氢制甲醇过程碳氢利用率的影响因素与工艺优化分析[J]. 化工进展, 2024, 43(5): 2843-2850. |
[4] | 吴琪, 白柏杨, 尹永杰, 马晓迅. 鄂尔多斯褐煤显微组分结构与其热解特性间的关系[J]. 化工进展, 2024, 43(5): 2370-2385. |
[5] | 孙贤, 柳军, 王晓辉, 孙长宇, 陈光进. 含下伏气的第一类天然气水合物藏开发实验与模拟研究进展[J]. 化工进展, 2024, 43(4): 2091-2103. |
[6] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[7] | 孙超, 艾诗钦, 刘月婵. 考虑物性变化及壳体传热的新型板壳式换热器板程流动传热数值模拟[J]. 化工进展, 2024, 43(4): 1676-1689. |
[8] | 祝妍妮, 王维, 孙闫晨昊, 魏岗, 张大为. 基于单液滴蒸发的离心喷雾干燥数值模拟[J]. 化工进展, 2024, 43(4): 1700-1710. |
[9] | 赵吉隆, 郭宇翔, 陈宏霞, 袁达忠, 杜小泽. 竖直铯热管传热特性的实验和数值模拟[J]. 化工进展, 2024, 43(4): 1711-1719. |
[10] | 周逸寰, 解强, 周红阳, 梁鼎成, 刘金昌. 基于分子模拟的多孔炭材料结构模型构建方法研究进展[J]. 化工进展, 2024, 43(3): 1535-1551. |
[11] | 禹言芳, 丁鹏程, 孟辉波, 石博文, 姚云娟. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156. |
[12] | 尹少武, 李纤纤, 韩嘉维, 路明, 童莉葛, 王立. 分户式低谷电蓄热供暖系统的蓄放热特性[J]. 化工进展, 2024, 43(3): 1206-1213. |
[13] | 李京, 方庆, 周文浩, 吴国良, 王家辉, 张华, 倪红卫. 挡板构型对含钒页岩浸出槽内多相流行为的影响[J]. 化工进展, 2024, 43(2): 619-627. |
[14] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
[15] | 边汉青, 张兴凯, 廖锐全, 王栋, 李锐, 罗晓矗, 侯耀东, 白晓弘, 甘庆明. 管内相分隔状态下湿气两相流双参数测量方法[J]. 化工进展, 2024, 43(2): 722-733. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |