化工进展 ›› 2025, Vol. 44 ›› Issue (1): 75-85.DOI: 10.16085/j.issn.1000-6613.2023-2272
收稿日期:2023-12-27
修回日期:2024-02-27
出版日期:2025-01-15
发布日期:2025-02-13
通讯作者:
王维
作者简介:李鑫(1998—),男,硕士研究生,研究方向为分离过程强化。E-mail:lxdsg@mail.dlut.edu.cn。
LI Xin(
), WANG Wei(
), ZHANG Yu, XIE Qiuyu, YUAN Hao
Received:2023-12-27
Revised:2024-02-27
Online:2025-01-15
Published:2025-02-13
Contact:
WANG Wei
摘要:
乙酸乙酯、乙醇和水体系能够形成三个二元和一个三元的共沸体系。本文旨在以离子液体(IL)为萃取剂打破这些共沸,实现该三元体系的有效分离。基于COSMO-RS模型和黏度预测模型,计算了65种ILs的选择性、溶解度和黏度,发现1-丁基-3-甲基咪唑醋酸盐([BMIM][Ac])是65种ILs中最符合要求的萃取剂。进行了乙酸乙酯(1)+乙醇(2)+水(3)+IL(4)的四元汽液相平衡(VLE)实验,证实[BMIM][Ac]能够打破所有共沸体系,验证了筛选结果。NRTL和UNIQUAC方程关联四元VLE数据的均方根误差分别为1.69%和2.20%,关联结果可靠。通过量化计算定性和定量分析了IL分离该三元体系的机理,表明[BMIM][Ac]与乙酸乙酯发生弱氢键作用(-8.22kcal/mol,1kcal≈4.186kJ),与乙醇和水分别发生强氢键作用(-15.83kcal/mol和-16.14kcal/mol)。基于方程关联所得参数,模拟并优化了以IL为萃取剂分离乙酸乙酯+乙醇+水体系的萃取精馏过程,显示乙酸乙酯、乙醇和水的产品纯度均可达到0.999。研究结果验证了[BMIM][Ac]作为萃取剂分离该三元共沸体系工业化可行性。
中图分类号:
李鑫, 王维, 张羽, 谢湫钰, 袁昊. 分离乙酸乙酯+乙醇+水体系:离子液体筛选、汽液相平衡和过程模拟[J]. 化工进展, 2025, 44(1): 75-85.
LI Xin, WANG Wei, ZHANG Yu, XIE Qiuyu, YUAN Hao. Separation of ethyl acetate+ethanol+water system: Ionic liquids screening, vapor liquid equilibrium and process simulation[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 75-85.
| 参数 | 数值 |
|---|---|
| d | -3.682 |
| e | 9.391 |
| f | 1.066 |
| g | -0.012 |
| h | 0.018 |
| i | -14.852 |
表1 黏度预测模型的参数值
| 参数 | 数值 |
|---|---|
| d | -3.682 |
| e | 9.391 |
| f | 1.066 |
| g | -0.012 |
| h | 0.018 |
| i | -14.852 |
| 组分 | ri | qi |
|---|---|---|
| 乙酸乙酯 | 3.4786 | 3.1160 |
| 乙醇 | 2.1055 | 1.9720 |
| 水 | 0.9200 | 1.4000 |
| [BMIM][Ac] | 8.7838 | 5.2463 |
表2 乙酸乙酯、乙醇、水和[BMIM][Ac]的面积和体积参数值
| 组分 | ri | qi |
|---|---|---|
| 乙酸乙酯 | 3.4786 | 3.1160 |
| 乙醇 | 2.1055 | 1.9720 |
| 水 | 0.9200 | 1.4000 |
| [BMIM][Ac] | 8.7838 | 5.2463 |
| T/K | ||||
|---|---|---|---|---|
| 351.0 | 0.007 | 0.017 | 2.521 | 1.011 |
| 350.1 | 0.033 | 0.077 | 2.382 | 1.010 |
| 348.9 | 0.080 | 0.163 | 2.124 | 1.011 |
| 347.2 | 0.159 | 0.267 | 1.864 | 1.037 |
| 346.1 | 0.251 | 0.353 | 1.621 | 1.075 |
| 345.1 | 0.381 | 0.446 | 1.394 | 1.160 |
| 344.8 | 0.489 | 0.512 | 1.258 | 1.254 |
| 344.9 | 0.630 | 0.593 | 1.128 | 1.438 |
| 345.5 | 0.753 | 0.679 | 1.059 | 1.657 |
| 346.6 | 0.858 | 0.780 | 1.029 | 1.889 |
| 347.9 | 0.926 | 0.869 | 1.017 | 2.050 |
| 349.1 | 0.975 | 0.949 | 1.014 | 2.218 |
表3 101.3kPa下乙酸乙酯(1)+乙醇(2)的二元VLE数据
| T/K | ||||
|---|---|---|---|---|
| 351.0 | 0.007 | 0.017 | 2.521 | 1.011 |
| 350.1 | 0.033 | 0.077 | 2.382 | 1.010 |
| 348.9 | 0.080 | 0.163 | 2.124 | 1.011 |
| 347.2 | 0.159 | 0.267 | 1.864 | 1.037 |
| 346.1 | 0.251 | 0.353 | 1.621 | 1.075 |
| 345.1 | 0.381 | 0.446 | 1.394 | 1.160 |
| 344.8 | 0.489 | 0.512 | 1.258 | 1.254 |
| 344.9 | 0.630 | 0.593 | 1.128 | 1.438 |
| 345.5 | 0.753 | 0.679 | 1.059 | 1.657 |
| 346.6 | 0.858 | 0.780 | 1.029 | 1.889 |
| 347.9 | 0.926 | 0.869 | 1.017 | 2.050 |
| 349.1 | 0.975 | 0.949 | 1.014 | 2.218 |
| T/K | |||||
|---|---|---|---|---|---|
| 351.8 | 0.031 | 0.013 | 0.637 | 0.050 | 0.768 |
| 350.7 | 0.030 | 0.035 | 0.637 | 0.115 | 0.721 |
| 348.6 | 0.029 | 0.096 | 0.606 | 0.234 | 0.623 |
| 347.6 | 0.032 | 0.178 | 0.555 | 0.340 | 0.541 |
| 347.1 | 0.031 | 0.259 | 0.512 | 0.407 | 0.490 |
| 346.7 | 0.030 | 0.421 | 0.409 | 0.534 | 0.390 |
| 347.3 | 0.031 | 0.556 | 0.314 | 0.633 | 0.312 |
| 348.2 | 0.029 | 0.707 | 0.209 | 0.755 | 0.213 |
| 353.8 | 0.061 | 0.010 | 0.646 | 0.048 | 0.811 |
| 352.4 | 0.062 | 0.029 | 0.645 | 0.119 | 0.759 |
| 350.8 | 0.061 | 0.058 | 0.643 | 0.199 | 0.695 |
| 349.8 | 0.059 | 0.095 | 0.637 | 0.269 | 0.640 |
| 348.7 | 0.059 | 0.147 | 0.612 | 0.351 | 0.572 |
| 348.4 | 0.061 | 0.200 | 0.572 | 0.417 | 0.516 |
| 347.9 | 0.062 | 0.262 | 0.527 | 0.466 | 0.474 |
| 347.8 | 0.059 | 0.327 | 0.482 | 0.522 | 0.426 |
| 347.7 | 0.058 | 0.395 | 0.435 | 0.574 | 0.382 |
| 347.9 | 0.060 | 0.454 | 0.391 | 0.622 | 0.342 |
| 348.0 | 0.061 | 0.506 | 0.353 | 0.662 | 0.308 |
| 348.2 | 0.060 | 0.551 | 0.318 | 0.694 | 0.280 |
| 348.6 | 0.061 | 0.598 | 0.281 | 0.733 | 0.246 |
| 357.9 | 0.102 | 0.006 | 0.609 | 0.040 | 0.843 |
| 356.6 | 0.103 | 0.020 | 0.604 | 0.116 | 0.776 |
| 354.5 | 0.099 | 0.043 | 0.597 | 0.207 | 0.695 |
| 352.1 | 0.098 | 0.084 | 0.577 | 0.324 | 0.595 |
| 351.2 | 0.101 | 0.122 | 0.557 | 0.395 | 0.536 |
| 350.1 | 0.102 | 0.174 | 0.528 | 0.464 | 0.479 |
| 349.1 | 0.100 | 0.244 | 0.487 | 0.538 | 0.416 |
| 348.9 | 0.101 | 0.346 | 0.436 | 0.630 | 0.342 |
| 349.4 | 0.103 | 0.469 | 0.360 | 0.722 | 0.263 |
表4 101.3kPa下乙酸乙酯(1)+乙醇(2)+水(3)+[BMIM][Ac](4)的VLE数据
| T/K | |||||
|---|---|---|---|---|---|
| 351.8 | 0.031 | 0.013 | 0.637 | 0.050 | 0.768 |
| 350.7 | 0.030 | 0.035 | 0.637 | 0.115 | 0.721 |
| 348.6 | 0.029 | 0.096 | 0.606 | 0.234 | 0.623 |
| 347.6 | 0.032 | 0.178 | 0.555 | 0.340 | 0.541 |
| 347.1 | 0.031 | 0.259 | 0.512 | 0.407 | 0.490 |
| 346.7 | 0.030 | 0.421 | 0.409 | 0.534 | 0.390 |
| 347.3 | 0.031 | 0.556 | 0.314 | 0.633 | 0.312 |
| 348.2 | 0.029 | 0.707 | 0.209 | 0.755 | 0.213 |
| 353.8 | 0.061 | 0.010 | 0.646 | 0.048 | 0.811 |
| 352.4 | 0.062 | 0.029 | 0.645 | 0.119 | 0.759 |
| 350.8 | 0.061 | 0.058 | 0.643 | 0.199 | 0.695 |
| 349.8 | 0.059 | 0.095 | 0.637 | 0.269 | 0.640 |
| 348.7 | 0.059 | 0.147 | 0.612 | 0.351 | 0.572 |
| 348.4 | 0.061 | 0.200 | 0.572 | 0.417 | 0.516 |
| 347.9 | 0.062 | 0.262 | 0.527 | 0.466 | 0.474 |
| 347.8 | 0.059 | 0.327 | 0.482 | 0.522 | 0.426 |
| 347.7 | 0.058 | 0.395 | 0.435 | 0.574 | 0.382 |
| 347.9 | 0.060 | 0.454 | 0.391 | 0.622 | 0.342 |
| 348.0 | 0.061 | 0.506 | 0.353 | 0.662 | 0.308 |
| 348.2 | 0.060 | 0.551 | 0.318 | 0.694 | 0.280 |
| 348.6 | 0.061 | 0.598 | 0.281 | 0.733 | 0.246 |
| 357.9 | 0.102 | 0.006 | 0.609 | 0.040 | 0.843 |
| 356.6 | 0.103 | 0.020 | 0.604 | 0.116 | 0.776 |
| 354.5 | 0.099 | 0.043 | 0.597 | 0.207 | 0.695 |
| 352.1 | 0.098 | 0.084 | 0.577 | 0.324 | 0.595 |
| 351.2 | 0.101 | 0.122 | 0.557 | 0.395 | 0.536 |
| 350.1 | 0.102 | 0.174 | 0.528 | 0.464 | 0.479 |
| 349.1 | 0.100 | 0.244 | 0.487 | 0.538 | 0.416 |
| 348.9 | 0.101 | 0.346 | 0.436 | 0.630 | 0.342 |
| 349.4 | 0.103 | 0.469 | 0.360 | 0.722 | 0.263 |
| 组分i | 组分j | NRTL方程 | UNIQUAC方程 | |||
|---|---|---|---|---|---|---|
| δgij /R | δgji /R | αij | δgij /R | δgji /R | ||
| 乙酸乙酯 | 乙醇 | -68.10 | 361.22 | 0.4 | -51.59 | 216.97 |
| 乙醇 | 水 | 201.12 | 222.61 | 0.3 | 549.34 | -229.56 |
| 乙酸乙酯 | 水 | 403.80 | 4968.73 | 0.3 | -146.53 | 6013.95 |
| 乙酸乙酯 | [BMIM][Ac] | 1428.80 | 296.38 | 0.4 | -4944.73 | -117.07 |
| 乙醇 | [BMIM][Ac] | -1207.90 | -869.18 | 0.4 | -5499.16 | -82.69 |
| 水 | [BMIM][Ac] | -1313.00 | -1263.40 | 0.4 | -5800.52 | -331.68 |
| RMSD=1.69% | RMSD=2.20% | |||||
表5 NRTL和UNIQUAC方程对四元VLE实验数据的关联结果及误差
| 组分i | 组分j | NRTL方程 | UNIQUAC方程 | |||
|---|---|---|---|---|---|---|
| δgij /R | δgji /R | αij | δgij /R | δgji /R | ||
| 乙酸乙酯 | 乙醇 | -68.10 | 361.22 | 0.4 | -51.59 | 216.97 |
| 乙醇 | 水 | 201.12 | 222.61 | 0.3 | 549.34 | -229.56 |
| 乙酸乙酯 | 水 | 403.80 | 4968.73 | 0.3 | -146.53 | 6013.95 |
| 乙酸乙酯 | [BMIM][Ac] | 1428.80 | 296.38 | 0.4 | -4944.73 | -117.07 |
| 乙醇 | [BMIM][Ac] | -1207.90 | -869.18 | 0.4 | -5499.16 | -82.69 |
| 水 | [BMIM][Ac] | -1313.00 | -1263.40 | 0.4 | -5800.52 | -331.68 |
| RMSD=1.69% | RMSD=2.20% | |||||
| 1 | MENG Dapeng, DAI Yao, XU Ying, et al. Energy, economic and environmental evaluations for the separation of ethyl acetate/ethanol/water mixture via distillation and pervaporation unit[J]. Process Safety and Environmental Protection, 2020, 140: 14-25. |
| 2 | ERNEST Flick W. Industrial solvents handbook[M]. 5th ed. New Jersey: Noyes Data Corporation, 1998: 818-819. |
| 3 | TOTH Andras Jozsef. Comprehensive evaluation and comparison of advanced separation methods on the separation of ethyl acetate-ethanol-water highly non-ideal mixture[J]. Separation and Purification Technology, 2019, 224: 490-508. |
| 4 | 李群生, 王亚茹, 文放. 乙醇-水体系分离提纯过程新技术的研究[J]. 化工进展, 2015, 34(12): 4179-4184. |
| LI Qunsheng, WANG Yaru, WEN Fang. Research on the new technology of ethanol-water distillation[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4179-4184. | |
| 5 | 徐东芳, 胡佳静, 王丽丽, 等. 变压精馏分离乙醇-氯仿共沸物的动态特性[J]. 化工进展, 2016, 35(4): 1242-1249. |
| XU Dongfang, HU Jiajing, WANG Lili, et al. Dynamic characteristics of pressure-swing distillation for ethanol-chloroform separation[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1242-1249. | |
| 6 | MA Yixin, CUI Peizhe, WANG Yongkun, et al. A review of extractive distillation from an azeotropic phenomenon for dynamic control[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1510-1522. |
| 7 | 张志刚, 张德彪, 张亲亲, 等. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153. |
| ZHANG Zhigang, ZHANG Debiao, ZHANG Qinqin, et al. Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS [J]. CIESC Journal, 2019, 70(1): 146-153. | |
| 8 | GERBAUD Vincent, Ivonne RODRIGUEZ-DONIS, HEGELY Laszlo, et al. Review of extractive distillation. Process design, operation, optimization and control[J]. Chemical Engineering Research and Design, 2019, 141: 229-271. |
| 9 | DUAN Cong, LI Chunli. Novel energy-saving methods to improve the three-column extractive distillation process for separating ethyl acetate and ethanol using furfural[J]. Separation and Purification Technology, 2021, 272: 118887. |
| 10 | YANG Ao, ZOU Hechen, I-Lung CHIEN, et al. Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7265-7283. |
| 11 | AYUSO Miguel, Andrés CAÑADA-BARCALA, LARRIBA Marcos, et al. Enhanced separation of benzene and cyclohexane by homogeneous extractive distillation using ionic liquids as entrainers[J]. Separation and Purification Technology, 2020, 240: 116583. |
| 12 | 李文秀, 张羽, 曹颖, 等. 离子液体用于四氢呋喃-乙醇-水三元共沸物系分离的研究[J]. 化工学报, 2020, 71(4): 1676-1682. |
| LI Wenxiu, ZHANG Yu, CAO Ying, et al. Study on separation of tetrahydrofuran-ethanol-water ternary azeotropesystem by ionic liquid[J]. CIESC Journal, 2020, 71(4): 1676-1682. | |
| 13 | 李文秀, 张琦, 张亲亲, 等. 含离子液体乙腈-正丙醇体系的等压汽液平衡[J]. 化工学报, 2015, 66(S1): 38-44. |
| LI Wenxiu, ZHANG Qi, ZHANG Qinqin, et al. Isobaric vapor-liquid equilibrium for system of acetonitrile-n-propanol system containing ionic liquids[J]. CIESC Journal, 2015, 66(S1): 38-44. | |
| 14 | ZHANG Lianzheng, WANG Jie, YANG Lin, et al. Separation of isopropyl alcohol+isopropyl acetate azeotropic mixture: Selection of ionic liquids as entrainers and vapor-liquid equilibrium validation[J]. Chinese Journal of Chemical Engineering, 2022, 50: 326-334. |
| 15 | 张清珍, 代成娜, 韩敬莉, 等. 萃取蒸馏脱除油品中硫的过程模拟与优化[J]. 化工进展, 2016, 35(8): 2553-2560. |
| ZHANG Qingzhen, DAI Chengna, HAN Jingli, et al. Desulfurization of oil products by extractive distillation: Simulation and optimization[J]. Chemical Industry and Engineering Progress. 2016, 35(8): 2553-2560. | |
| 16 | 高腾飞, 李国选, 雷志刚. 从催化裂化柴油中分离联苯的溶剂筛选: 实验和计算热力学[J]. 化工学报, 2022, 73(12): 5314-5323. |
| GAO Tengfei, LI Guoxuan, LEI Zhigang. Solvents selection for separation of biphenyl from FCC diesel: Experimental and computational thermodynamics[J]. CIESC Journal, 2022, 73(12): 5314-5323. | |
| 17 | SALLEH M. Zulhaziman M, HADJ-KALI Mohamed K, HASHIM Mohd A,et al. Ionic liquids for the separation of benzene and cyclohexane - COSMO-RS screening and experimental validation[J]. Journal of Molecular Liquids, 2018, 266: 51-61. |
| 18 | MALIK Huzaifa, KHAN Huma Warsi, HASSAN SHAH Mansoor Ul, et al. Screening of ionic liquids as green entrainers for ethanol water separation by extractive distillation: COSMO-RS prediction and aspen plus simulation[J]. Chemosphere, 2022, 311(Pt 2): 136901. |
| 19 | VERMA Vijay Kumar, BANERJEE Tamal. Ionic liquids as entrainers for water+ethanol, water+2-propanol, and water+THF systems: A quantum chemical approach[J]. The Journal of Chemical Thermodynamics, 2010, 42(7): 909-919. |
| 20 | Vicent ORCHILLÉS A, MIGUEL Pablo J, LLOPIS Francisco J, et al. Isobaric vapor-liquid equilibria for the extractive distillation of ethanol+water mixtures using 1-ethyl-3-methylimidazolium dicyanamide[J]. Journal of Chemical & Engineering Data, 2011, 56(12): 4875-4880. |
| 21 | TSANAS Christos, TZANI Andromachi, PAPADOPOULOS Achilleas, et al. Ionic liquids as entrainers for the separation of the ethanol/water system[J]. Fluid Phase Equilibria, 2014, 379: 148-156. |
| 22 | GE Yun, ZHANG Lianzhong, YUAN Xingcai, et al. Selection of ionic liquids as entrainers for separation of (water+ethanol)[J]. The Journal of Chemical Thermodynamics, 2008, 40(8): 1248-1252. |
| 23 | ANDREATTA Alfonsina E, CHARNLEY Matthew P, BRENNECKE Joan F. Using ionic liquids to break the ethanol-ethyl acetate azeotrope[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3435-3444. |
| 24 | LI Rui, CUI Xianbao, ZHANG Ying, et al. Vapor-liquid equilibrium and liquid-liquid equilibrium of ethyl acetate+ethanol+1-ethyl-3-methylimidazolium acetate[J]. Journal of Chemical & Engineering Data, 2012, 57(3): 911-917. |
| 25 | LI Qunsheng, ZHANG Jiguo, LEI Zhigang, et al. Isobaric vapor-liquid equilibrium for ethyl acetate plus ethanol+1-ethyl-3-methylimidazolium tetrafluoroborate[J]. Journal of Chemical and Engineering Data, 2009, 54(2): 193-197. |
| 26 | Vicent ORCHILLÉS A, MIGUEL Pablo J, VERCHER Ernesto, et al. Isobaric vapor-liquid equilibria for ethyl acetate+ethanol+1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa[J]. Journal of Chemical and Engineering Data, 2007, 52(6): 2325-2330. |
| 27 | ZHANG Lianzhong, YUAN Xingcai, QIAO Bingbang, et al. Isobaric vapor-liquid equilibria for water+ethanol+ethyl acetate+1-butyl-3-methylimidazolium acetate at low water mole fractions[J]. Journal of Chemical and Engineering Data, 2008, 53(7): 1595-1601. |
| 28 | MA Shoutao, SHANG Xianyong, LI Lumin, et al. Energy-saving thermally coupled ternary extractive distillation process using ionic liquids as entrainer for separating ethyl acetate-ethanol-water ternary mixture[J]. Separation and Purification Technology, 2019, 226: 337-349. |
| 29 | PAN Qi, SHANG Xianyong, MA Shoutao, et al. Control comparison of extractive distillation configurations for separating ethyl acetate-ethanol-water ternary mixture using ionic liquids as entrainer[J]. Separation and Purification Technology, 2020, 236: 116290. |
| 30 | ZHANG Yu, PAN Yanqiu, ZHANG Tao, et al. A comprehensive method of ionic liquid screening and experimental verification for simultaneous separation of multiple sulfides from oil[J]. Separation and Purification Technology, 2023, 315: 123714. |
| 31 | FREIRE Mara G, TELES Ana Rita R, ROCHA Marisa A A, et al. Thermophysical characterization of ionic liquids able to dissolve biomass[J]. Journal of Chemical and Engineering Data, 2011, 56(12): 4813-4822. |
| 32 | 雷志刚, 王洪有, 许峥, 等. 萃取精馏的研究进展[J]. 化工进展, 2001, 20(9): 6-9. |
| LEI Zhigang, WANG Hongyou, XU Zheng, et al. A review of extractive distillation[J]. Chemical Industry and Engineering Progress, 2001, 20(9): 6-9. | |
| 33 | EIDEN Philipp, BULUT Safak, Tobias KÖCHNER, et al. In silico predictions of the temperature-dependent viscosities and electrical conductivities of functionalized and nonfunctionalized ionic liquids[J]. Journal of Physical Chemistry B, 2011, 115(2): 300-309. |
| 34 | WANG Ping, XU Dongmei, YAN Peisong, et al. Separation of azeotrope (ethanol and ethyl methyl carbonate) by different imidazolium-based ionic liquids: Ionic liquids interaction analysis and phase equilibrium measurements[J]. Journal of Molecular Liquids, 2018, 261: 89-95. |
| 35 | Marek ŁUSZCZYK, MALANOWSKI Stanislaw K. Vapor-liquid equilibrium in α-methylbenzenemethanol + water[J]. Journal of Chemical and Engineering Data, 2006, 51(5): 1735-1739. |
| 36 | HONG Guibing, LEE Ming-Jer, LIN Ho-Mu. Multiphase coexistence for mixtures containing water, 2-propanol, and ethyl acetate[J]. Fluid Phase Equilibria, 2002, 203(1/2): 227-245. |
| 37 | YANG Tzu-Huai, JESSIE LUE Shingjiang. UNIQUAC and UNIQUAC-HB models for the sorption behavior of ethanol/water mixtures in a cross-linked polydimethylsiloxane membrane[J]. Journal of Membrane Science, 2012, 415: 534-545. |
| 38 | SUN Guangming, HUANG Weijia, ZHENG Danxing, et al. Vapor-liquid equilibrium prediction of ammonia-ionic liquid working pairs of absorption cycle using UNIFAC model[J]. Chinese Journal of Chemical Engineering, 2014, 22(1): 72-78. |
| 39 | LU Tian, CHEN Qinxue. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems[J]. Journal of Computational Chemistry, 2022, 43(8): 539-555. |
| 40 | LU Tian, CHEN Feiwu. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
| 41 | HUMPHREY William, DALKE Andrew, SCHULTEN Klaus. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
| 42 | VALDERRAMA José O, SANGA Wilson W, LAZZÚS Juan A. Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids[J]. Industrial & Engineering Chemistry Research, 2008, 47(4): 1318-1330. |
| 43 | LUYBEN William L. Distillation design and control using AspenTM simulation[M]. New Jersey: John Wiley & Sons Inc, 2013: 87-89. |
| 44 | LUYBEN William L, YU Cheng-Ching. Reactive distillation design and control[M]. New Jersey: John Wiley & Sons Inc, 2008: 42-43. |
| 45 | WISNIAK Jaime, ORTEGA Juan, Luis FERNÁNDEZ. A fresh look at the thermodynamic consistency of vapour-liquid equilibria data[J]. The Journal of Chemical Thermodynamics, 2017, 105: 385-395. |
| 46 | YUE Kun, ZHOU Guowei. Isobaric vapor-liquid equilibrium for ethyl acetate+ethanol with ionic liquids [MMIM][DMP] and [OMIM][PF6] as entrainers[J]. Journal of Molecular Liquids, 2022, 348: 118404. |
| 47 | CHEN Zhengrun, DAI Yasen, CHI Shuxiu, et al. Analysis and intensification of energy saving process for separation of azeotrope by ionic liquid extractive distillation based on molecular dynamics simulation[J]. Separation and Purification Technology, 2021, 276: 119254. |
| 48 | ZEESHAN Muhammad, NOZARI Vahid, KESKIN Seda, et al. Structural factors determining thermal stability limits of ionic liquid/MOF composites: Imidazolium ionic liquids combined with CuBTC and ZIF-8[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14124-14138. |
| [1] | 陈可欣, 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄. 螺旋管内水-水蒸气两相流压降及流型转变特性[J]. 化工进展, 2025, 44(2): 613-624. |
| [2] | 张迁, 刘鑫, 王冰, 徐晶, 曹晨熙. 复杂风速风向与事件树下储罐区多米诺事故分析[J]. 化工进展, 2025, 44(2): 1170-1182. |
| [3] | 于海, 栾智勇, 姬宜朋, 安申法, 陈家庆, 司政, 任强, 孙丰旭, 宋泽润. 动态水力旋流器内短路流流量的计算方法及影响分析[J]. 化工进展, 2025, 44(1): 135-144. |
| [4] | 乔磊, 张亚新, 魏博, 冉文燊, 马金荣, 王峰. 氧热法气流床电石反应器烧嘴布置参数及操作参数优化[J]. 化工进展, 2025, 44(1): 145-157. |
| [5] | 邢雷, 周晓庆, 蒋明虎, 赵立新, 李新亚, 陈德海. 突缩突扩圆管内离散油滴运动行为及变形特性[J]. 化工进展, 2025, 44(1): 27-37. |
| [6] | 李灏, 孙昱楠, 李健, 陶俊宇, 程占军, 颜蓓蓓, 陈冠益. 陈腐垃圾与原生垃圾共气化特性[J]. 化工进展, 2025, 44(1): 525-537. |
| [7] | 孙建辰, 杨捷, 李军, 孙会东, 牛俊敏, 廖逸飞, 任俊颖, 商辉. 催化剂颗粒排列方式对微波加热效果的影响[J]. 化工进展, 2025, 44(1): 57-65. |
| [8] | 张天昊, 李双喜, 贾祥际, 胡鼎国, 崔瑞焯, 李世聪. 干摩擦釜用机械密封DLC涂层-石墨配副摩擦磨损与温度变形场分析[J]. 化工进展, 2024, 43(S1): 121-133. |
| [9] | 毛宁轩, 万小维, 鞠杰, 胡彦杰, 江浩. 工业气固流化床内流场的CFD-PBM数值模拟和结构优化[J]. 化工进展, 2024, 43(S1): 13-20. |
| [10] | 苏瑶, 陈占秀, 杨历, 邢赫威, 呼和仓, 李源华. 热源温度对非对称纳米通道流动换热的影响[J]. 化工进展, 2024, 43(S1): 144-153. |
| [11] | 张伟业, 朱晓武, 罗永皓, 王志. 复合型叶序微流道混合性能的数值模拟[J]. 化工进展, 2024, 43(S1): 154-165. |
| [12] | 尹少武, 黄若萧, 昝晓君, 童莉葛, 刘传平, 王立. 基于CPCM正六边形砖的蓄热储能系统设计与蓄放热模拟[J]. 化工进展, 2024, 43(S1): 243-254. |
| [13] | 杨会民, 杜加丽, 权亚文, 吴升潇, 靳皎, 吴峰. 侧喷嘴下行床内热量传递特性CFD模拟[J]. 化工进展, 2024, 43(S1): 32-42. |
| [14] | 陈王觅, 席北斗, 李鸣晓, 叶美瀛, 侯佳奇, 于承泽, 魏域芳, 孟繁华. 热解系统碳排放削减技术研究进展[J]. 化工进展, 2024, 43(S1): 479-503. |
| [15] | 李磊, 赵宴民, 田海洋, 李江伟, 周强, 何佳妮, 武琬越. 燃气烟气中低浓度CO2的低能耗高效捕集工艺模拟优化[J]. 化工进展, 2024, 43(S1): 581-589. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |