1 |
SHAH Mansi S, TSAPATSIS Michael, Ilja SIEPMANN J. Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes[J]. Chemical Reviews, 2017, 117(14): 9755-9803.
|
2 |
OLSSON Linda, FALLDE Magdalena. Waste(d) potential: A socio-technical analysis of biogas production and use in Sweden[J]. Journal of Cleaner Production, 2015, 98: 107-115.
|
3 |
CHEIN Reiyu, YANG Zengwei. H2S effect on dry reforming of biogas for syngas production[J]. International Journal of Energy Research, 2019, 43(8): 3330-3345.
|
4 |
钱东升, 房俊逸, 陈东之, 等. 板式生物滴滤塔高效净化硫化氢废气的研究[J]. 环境科学, 2011, 32(9): 2786-2793.
|
|
QIAN Dongsheng, FANG Junyi, CHEN Dongzhi, et al. Removal of hydrogen sulfide by plate type-biotrickling filter[J]. Environmental Science, 2011, 32(9): 2786-2793.
|
5 |
LIU Dongjing, LI Bin, WU Jiang, et al. Sorbents for hydrogen sulfide capture from biogas at low temperature: A review[J]. Environmental Chemistry Letters, 2020, 18(1): 113-128.
|
6 |
YANG Can, YE Hanfeng, BYUN Jeehye, et al. N-rich carbon catalysts with economic feasibility for the selective oxidation of hydrogen sulfide to sulfur[J]. Environmental Science & Technology, 2020, 54(19): 12621-12630.
|
7 |
刘岱, 陈绍云, 黄纯洁, 等. Ce-Cu-Al-O复合金属氧化物吸附剂低温脱除H2S[J]. 化工进展, 2016, 35(11): 3701-3706.
|
|
LIU Dai, CHEN Shaoyun, HUANG Chunjie, et al. Study of low temperature H2S removal on Ce-Cu-Al-O mixed metal oxide adsorbents[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3701-3706.
|
8 |
BU Hao, CARVALHO Gilda, HUANG Casey, et al. Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter[J]. Chemosphere, 2022, 291: 132723.
|
9 |
LIU Dongjing, ZHOU Weiguo, WU Jiang. CeO2-MnO x /ZSM-5 sorbents for H2S removal at high temperature[J]. Chemical Engineering Journal, 2016, 284: 862-871.
|
10 |
范伟. 高硫容铁基催化剂天然气脱硫实验研究[J]. 天然气化工, 2018, 43(5): 99-105.
|
|
FAN Wei. Experimental study on desulfurization of natural gas with high sulfur capacity iron-based catalyst[J]. Natural Gas Chemical Industry, 2018, 43(5): 99-105.
|
11 |
CHUICHULCHERM Sinsupha, KASICHAN Nathathai, SRINOPHAKUN Penjit, et al. The use of ozone in a continuous cyclical swing mode regeneration of Fe-EDTA for a clean biogas process from a swine farm waste[J]. Journal of Cleaner Production, 2017, 142: 1267-1273.
|
12 |
DE ANGELIS A. Natural gas removal of hydrogen sulphide and mercaptans[J]. Applied Catalysis B: Environmental, 2012, 113: 37-42.
|
13 |
李飞, 谷小虎, 王旭峰, 等. 新型络合铁催化剂在焦炉煤气净化中的研究[J]. 现代化工, 2021, 41(7): 225-227.
|
|
LI Fei, GU Xiaohu, WANG Xufeng, et al. Application of new complex iron catalyst in coke oven gas purification[J]. Modern Chemical Industry, 2021, 41(7): 225-227.
|
14 |
MA Yiwen, CHEN Zezhi, GONG Huijuan. Study on selective hydrogen sulfide removal over carbon dioxide by catalytic oxidative absorption method with chelated iron as the catalyst[J]. Renewable Energy, 2016, 96: 1119-1126.
|
15 |
PANDEY R A, MALHOTRA S. Desulfurization of gaseous fuels with recovery of elemental sulfur: An overview[J]. Critical Reviews in Environmental Science and Technology, 1999, 29(3): 229-268.
|
16 |
LIMTRAKUL Sunun, ROJANAMATIN Sudtida, VATANATHAM Terdthai, et al. Gas-lift reactor for hydrogen sulfide removal[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6115-6122.
|
17 |
DEMMINK J F, BEENACKERS A A C M. Gas desulfurization with ferric chelates of EDTA and HEDTA: New model for the oxidative absorption of hydrogen sulfide[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1444-1453.
|
18 |
WUBS Harm J, BEENACKERS Antonie A C M. Kinetics of the oxidation of ferrous chelates of EDTA and HEDTA in aqueous solution[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2580-2594.
|
19 |
Simon PICHÉ, RIBEIRO Nicolas, BACAOUI Abdelaziz, et al. Assessment of a redox alkaline/iron-chelate absorption process for the removal of dilute hydrogen sulfide in air emissions[J]. Chemical Engineering Science, 2005, 60(22): 6452-6461.
|
20 |
GAMBARDELLA Francesca, GANZEVELD Ineke J, WINKELMAN Jos G M, et al. Kinetics of the reaction of FeⅡ(EDTA) with oxygen in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2005, 44(22): 8190-8198.
|
21 |
DESHMUKH Girish M, SHETE Aparna, PAWAR Deepali M. Oxidative absorption of hydrogen sulfide using an iron-chelate based process: Chelate degradation[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(3): 432-436.
|
22 |
BEDELL Stephen A, WORLEY Clare M. Effect of dioxygen partial pressure on ligand degradation in chelated iron dehydrosulfurization processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10186-10189.
|
23 |
MIAO Xinmei, MA Yiwen, CHEN Zezhi, et al. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA[J]. Environmental Technology, 2018, 39(23): 3006-3012.
|
24 |
VECCHIO Carmelo LO, ARICÒ Antonino Salvatore, MONFORTE Giuseppe, et al. EDTA-derived Co N C and FeNC electro-catalysts for the oxygen reduction reaction in acid environment[J]. Renewable Energy, 2018, 120: 342-349.
|
25 |
MAIGUT Joachim, MEIER Roland, VAN ELDIK Rudi. Influence of fluoride on the reversible binding of NO by [Fe(Ⅱ)(EDTA)(H2O)]2-. Inhibition of autoxidation of [Fe(Ⅱ)(EDTA)(H2O)] 2- [J]. Inorganic Chemistry, 2008, 47(14): 6314-6321.
|
26 |
HUA Guoxiong, ZHANG Qingzhi, MCMANUS Derek, et al. Improvement of the Fe-NTA sulfur recovery system by the addition of a hydroxyl radical scavenger[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2007, 182(1): 181-198.
|
27 |
饶胡敏, 黄旺银. 影响水体中溶解氧含量因素的探讨[J]. 盐科学与化工, 2017, 46(3): 40-43.
|
|
RAO Humin, HUANG Wangyin. Discussion on influencing factor of content of dissolved oxygen in water[J]. Journal of Salt Science and Chemical Industry, 2017, 46(3): 40-43.
|
28 |
DEMMINK J F, BEENACKERS A A C M. Oxidation of ferrous nitrilotriacetic acid with oxygen: A model for oxygen mass transfer parallel to reaction kinetics[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 1989-2005.
|
29 |
ANSON Colin W, GHOSH Soumya, Sharon HAMMES-SCHIFFER, et al. Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone: Mechanism and implications for aerobic oxidation catalysis[J]. Journal of the American Chemical Society, 2016, 138(12): 4186-4193.
|
30 |
LUC Wesley, JIANG Zhao, CHEN Jingguang G, et al. Role of surface oxophilicity in copper-catalyzed water dissociation[J]. ACS Catalysis, 2018, 8(10): 9327-9333.
|
31 |
CANTRELL Kirk J, YABUSAKI Steven B, ENGELHARD Mark H, et al. Oxidation of H2S by iron oxides in unsaturated conditions[J]. Environmental Science & Technology, 2003, 37(10): 2192-2199.
|
32 |
罗莹, 朱振峰, 刘有智. 络合铁法脱H2S技术研究进展[J]. 天然气化工, 2014, 39(1): 88-94.
|
|
LUO Ying, ZHU Zhenfeng, LIU Youzhi. Research progress in technologies for removal of H2S with iron chelate solutions[J]. Natural Gas Chemical Industry, 2014, 39(1): 88-94.
|
33 |
KLEINJAN Wilfred E, DE KEIZER Arie, JANSSEN Albert J H. Kinetics of the reaction between dissolved sodium sulfide and biologically produced sulfur[J]. Industrial & Engineering Chemistry Research, 2005, 44(2): 309-317.
|
34 |
Simon PICHÉ, LARACHI Faïçal. Dynamics of pH on the oxidation of HS- with iron(Ⅲ) chelates in anoxic conditions[J]. Chemical Engineering Science, 2006, 61(23): 7673-7683.
|