化工进展 ›› 2025, Vol. 44 ›› Issue (1): 558-571.DOI: 10.16085/j.issn.1000-6613.2023-2282
刘新维1(), 高珊1,2(
), 王红涛1(
), 王建成1,2
收稿日期:
2023-12-28
修回日期:
2024-05-17
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
高珊,王红涛
作者简介:
刘新维(1999—),男,硕士研究生,研究方向为固体废物处理与资源化利用。E-mail:745581374@qq.com
基金资助:
LIU Xinwei1(), GAO Shan1,2(
), WANG Hongtao1(
), WANG Jiancheng1,2
Received:
2023-12-28
Revised:
2024-05-17
Online:
2025-01-15
Published:
2025-02-13
Contact:
GAO Shan, WANG Hongtao
摘要:
以工业废渣——煤气化细渣(FS)、铝灰(AA)为原料,一步碱熔法制备介孔吸附材料。研究了上述介孔材料对水中亚甲基蓝的吸附性能,结果表明,FS的最佳处理条件为:mFS∶mNaOH=5∶10、煅烧温度450℃、处理时间5h;AA的最佳处理条件为:mAA∶mNaOH=5∶8、煅烧温度550℃、处理时间3h。经碱熔处理后,FS材料对水中亚甲基蓝(MB)的吸附容量由1.16mg/g(FS-0)提升到67.85mg/g(FS-2),增长了近58倍;AA对水中亚甲基蓝的吸附容量由1.4mg/g(AA-0)提升到23.95mg/g(AA-2),增长了近17倍。X射线衍射、扫描电子显微镜、比表面积分析及傅里叶变换红外光谱等表征结果表明,两种材料在碱熔过程中形成的介孔孔道、带有氧缺陷位的 Si—O—基团以及大量的Al—OH和Si—OH键是其对亚甲基蓝吸附性能得到大大提升的原因。本研究表明FS和AA可以应用为一种廉价的亚甲基蓝吸附剂,为二者的资源化利用和印染废水的处理提供了一种潜在的方法。
中图分类号:
刘新维, 高珊, 王红涛, 王建成. 气化细渣、铝灰的活化及其吸附性能[J]. 化工进展, 2025, 44(1): 558-571.
LIU Xinwei, GAO Shan, WANG Hongtao, WANG Jiancheng. Activation of gasification fine slag and aluminum ash and their adsorption properties[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 558-571.
样品 | 改性条件 | ||
---|---|---|---|
灰碱质量比 | 煅烧温度/℃ | 煅烧时间/h | |
FS-0 | — | — | — |
FS-1 | 5∶8 | 450 | 5 |
FS-2 | 5∶10 | 450 | 5 |
FS-3 | 5∶15 | 450 | 5 |
FS-4 | 5∶10 | 350 | 5 |
FS-5 | 5∶10 | 550 | 5 |
FS-6 | 5∶10 | 650 | 5 |
FS-7 | 5∶10 | 450 | 3 |
FS-8 | 5∶10 | 450 | 7 |
AA-0 | — | — | — |
AA-1 | 5∶4 | 550 | 3 |
AA-2 | 5∶8 | 550 | 3 |
AA-3 | 5∶15 | 550 | 3 |
AA-4 | 5∶8 | 350 | 3 |
AA-5 | 5∶8 | 450 | 3 |
AA-6 | 5∶8 | 650 | 3 |
AA-7 | 5∶8 | 550 | 1 |
AA-8 | 5∶8 | 550 | 5 |
表1 FS与AA的改性条件
样品 | 改性条件 | ||
---|---|---|---|
灰碱质量比 | 煅烧温度/℃ | 煅烧时间/h | |
FS-0 | — | — | — |
FS-1 | 5∶8 | 450 | 5 |
FS-2 | 5∶10 | 450 | 5 |
FS-3 | 5∶15 | 450 | 5 |
FS-4 | 5∶10 | 350 | 5 |
FS-5 | 5∶10 | 550 | 5 |
FS-6 | 5∶10 | 650 | 5 |
FS-7 | 5∶10 | 450 | 3 |
FS-8 | 5∶10 | 450 | 7 |
AA-0 | — | — | — |
AA-1 | 5∶4 | 550 | 3 |
AA-2 | 5∶8 | 550 | 3 |
AA-3 | 5∶15 | 550 | 3 |
AA-4 | 5∶8 | 350 | 3 |
AA-5 | 5∶8 | 450 | 3 |
AA-6 | 5∶8 | 650 | 3 |
AA-7 | 5∶8 | 550 | 1 |
AA-8 | 5∶8 | 550 | 5 |
样品 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | ClO2 | SO3 | Na2O |
---|---|---|---|---|---|---|---|---|
FS-0 | 37.30 | 26.04 | 14.90 | 11.72 | 0.59 | 0.53 | 5.47 | 0 |
FS-2 | 34.79 | 23.08 | 21.84 | 17.00 | 0 | 0.48 | 0.08 | 0 |
AA-0 | 4.22 | 74.95 | 0.70 | 1.48 | 5.83 | 9.14 | 1.09 | 0 |
AA-2 | 13.23 | 61.89 | 3.81 | 3.43 | 10.14 | 0.61 | 0.06 | 0 |
表2 FS及AA处理前后的化学组成(质量分数,%)
样品 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | ClO2 | SO3 | Na2O |
---|---|---|---|---|---|---|---|---|
FS-0 | 37.30 | 26.04 | 14.90 | 11.72 | 0.59 | 0.53 | 5.47 | 0 |
FS-2 | 34.79 | 23.08 | 21.84 | 17.00 | 0 | 0.48 | 0.08 | 0 |
AA-0 | 4.22 | 74.95 | 0.70 | 1.48 | 5.83 | 9.14 | 1.09 | 0 |
AA-2 | 13.23 | 61.89 | 3.81 | 3.43 | 10.14 | 0.61 | 0.06 | 0 |
样品 | BET比表面积/m2·g-1 | 外比表面积/m2·g-1 | 微孔体积/cm3·g-1 | 介孔体积/cm3·g-1 | 孔径/nm |
---|---|---|---|---|---|
FS-0 | 1.87 | 1.10 | 0.0004 | 0.0009 | 5.572 |
FS-2 | 109.29 | 102.78 | 0.0027 | 0.2250 | 8.231 |
AA-0 | 4.55 | 2.77 | 0.0009 | 0.0080 | 10.384 |
AA-2 | 96.32 | 89.40 | 0.0031 | 0.2394 | 13.430 |
表3 FS及AA处理前后的孔结构性质
样品 | BET比表面积/m2·g-1 | 外比表面积/m2·g-1 | 微孔体积/cm3·g-1 | 介孔体积/cm3·g-1 | 孔径/nm |
---|---|---|---|---|---|
FS-0 | 1.87 | 1.10 | 0.0004 | 0.0009 | 5.572 |
FS-2 | 109.29 | 102.78 | 0.0027 | 0.2250 | 8.231 |
AA-0 | 4.55 | 2.77 | 0.0009 | 0.0080 | 10.384 |
AA-2 | 96.32 | 89.40 | 0.0031 | 0.2394 | 13.430 |
样品 | 拟一级动力学模型 | 拟二级动力学模型 | ||||
---|---|---|---|---|---|---|
qe/mg·g-1 | k1/min-1 | R2 | qe/mg·g-1 | k2/mg·g-1·min-1 | R2 | |
FS-2 | 58.82 | 0.153 | 0.976 | 63.32 | 0.0039 | 0.996 |
AA-2 | 27.01 | 0.039 | 0.977 | 34.27 | 0.0011 | 0.953 |
表4 FS-2与AA-2吸附MB的动力学拟合参数
样品 | 拟一级动力学模型 | 拟二级动力学模型 | ||||
---|---|---|---|---|---|---|
qe/mg·g-1 | k1/min-1 | R2 | qe/mg·g-1 | k2/mg·g-1·min-1 | R2 | |
FS-2 | 58.82 | 0.153 | 0.976 | 63.32 | 0.0039 | 0.996 |
AA-2 | 27.01 | 0.039 | 0.977 | 34.27 | 0.0011 | 0.953 |
样品 | MB在吸附剂表面上外扩散吸附阶段 | 吸附质在吸附剂孔隙中扩散阶段 | 吸附平衡阶段 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kid,1 /mg·g-1·min-0.5 | Cid,1 /mg·g-1 | R2 | kid,2 /mg·g-1·min-0.5 | Cid,2 /mg·g-1 | R2 | kid,3 /mg·g-1·min-0.5 | Cid,3 /mg·g-1 | R2 | |||||||
FS-2 | 5.798 | 24.868 | 0.983 | 1.878 | 45.807 | 0.999 | 0.0205 | 60.544 | 0.0024 | ||||||
AA-2 | 4.999 | -8.391 | 0.996 | 3.113 | 2.711 | 0.887 | -0.309 | 28.421 | 0.996 |
表5 FS-2与AA-2吸附MB的颗粒内扩散模型拟合参数
样品 | MB在吸附剂表面上外扩散吸附阶段 | 吸附质在吸附剂孔隙中扩散阶段 | 吸附平衡阶段 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kid,1 /mg·g-1·min-0.5 | Cid,1 /mg·g-1 | R2 | kid,2 /mg·g-1·min-0.5 | Cid,2 /mg·g-1 | R2 | kid,3 /mg·g-1·min-0.5 | Cid,3 /mg·g-1 | R2 | |||||||
FS-2 | 5.798 | 24.868 | 0.983 | 1.878 | 45.807 | 0.999 | 0.0205 | 60.544 | 0.0024 | ||||||
AA-2 | 4.999 | -8.391 | 0.996 | 3.113 | 2.711 | 0.887 | -0.309 | 28.421 | 0.996 |
样品 | T/K | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|---|
R2 | KL | qmax | R2 | KF | 1/n | ||
FS-2 | 298.15 | 0.9929 | 0.0175 | 80.64 | 0.9214 | 11.16 | 0.3185 |
313.15 | 0.9902 | 0.0012 | 78.32 | 0.9320 | 6.09 | 0.404 | |
328.15 | 0.9906 | 0.0062 | 85.63 | 0.9440 | 2.66 | 0.532 | |
AA-2 | 298.15 | 0.9932 | 0.0128 | 30.90 | 0.6120 | 2.19 | 0.439 |
313.15 | 0.9928 | 0.0091 | 30.27 | 0.6830 | 1.18 | 0.533 | |
328.15 | 0.9914 | 0.0044 | 35.10 | 0.7190 | 0.35 | 0.725 |
表6 FS-2与AA-2吸附MB的等温线模型参数
样品 | T/K | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|---|
R2 | KL | qmax | R2 | KF | 1/n | ||
FS-2 | 298.15 | 0.9929 | 0.0175 | 80.64 | 0.9214 | 11.16 | 0.3185 |
313.15 | 0.9902 | 0.0012 | 78.32 | 0.9320 | 6.09 | 0.404 | |
328.15 | 0.9906 | 0.0062 | 85.63 | 0.9440 | 2.66 | 0.532 | |
AA-2 | 298.15 | 0.9932 | 0.0128 | 30.90 | 0.6120 | 2.19 | 0.439 |
313.15 | 0.9928 | 0.0091 | 30.27 | 0.6830 | 1.18 | 0.533 | |
328.15 | 0.9914 | 0.0044 | 35.10 | 0.7190 | 0.35 | 0.725 |
样品 | T/K | ΔG/kJ·mol-1 | ΔH/kJ·mol-1 | ΔS/J·mol-1·K-1 |
---|---|---|---|---|
FS-2 | 298.15 | 4.38 | -5.92 | -34.54 |
313.15 | 4.93 | |||
328.15 | 5.40 | |||
AA-2 | 298.15 | 6.59 | -5.04 | -38.98 |
313.15 | 7.17 | |||
328.15 | 7.75 |
表7 FS-2与AA-2吸附MB的热力学参数
样品 | T/K | ΔG/kJ·mol-1 | ΔH/kJ·mol-1 | ΔS/J·mol-1·K-1 |
---|---|---|---|---|
FS-2 | 298.15 | 4.38 | -5.92 | -34.54 |
313.15 | 4.93 | |||
328.15 | 5.40 | |||
AA-2 | 298.15 | 6.59 | -5.04 | -38.98 |
313.15 | 7.17 | |||
328.15 | 7.75 |
1 | LAN Dawei, ZHU Huiwen, ZHANG Jianwen, et al. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives[J]. Chemosphere, 2022, 293: 133464. |
2 | Rania AL-TOHAMY, Sameh S ALI, LI Fanghua, et al. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety[J]. Ecotoxicology and Environmental Safety, 2022, 231: 113160. |
3 | 马超. 气化渣基氨氮吸附剂的制备及其性能研究[D]. 太原: 太原理工大学, 2021. |
MA Chao. Preparation and properties of gasification slag-based NH4-N adsorbent[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
4 | 范宁, 张逸群, 樊盼盼, 等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术, 2022, 28(8): 145-154. |
FAN Ning, ZHANG Yiqun, FAN Panpan, et al. Research progress on characteristic analysis and resource utilization of coal gasification slag[J]. Clean Coal Technology, 2022, 28(8): 145-154. | |
5 | 沈汉林. 二次铝灰的理化特性和全组分资源化研究及应用[D]. 北京: 北京科技大学, 2022. |
SHEN Hanlin. Characteristics of secondary aluminum dross and research and application of its total resource utilization[D]. Beijing: University of Science and Technology Beijing, 2022. | |
6 | 刘艳丽, 李强, 陈占飞, 等. 煤气化渣特性分析及综合利用研究进展[J]. 煤炭科学技术, 2022, 50(11): 251-257. |
LIU Yanli, LI Qiang, CHEN Zhanfei, et al. Research progress characteristics analysis and comprehensive utilization of coal gasification slag[J]. Coal Science and Technology, 2022, 50(11): 251-257. | |
7 | YUAN Ning, TAN Kaiqi, ZHANG Xinling, et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag[J]. Chemosphere, 2022, 303: 134839. |
8 | QIAO Qixia, ZHOU Huiming, GUO Feiqiang, et al. Facile and scalable synthesis of mesoporous composite materials from coal gasification fine slag for enhanced adsorption of malachite green[J]. Journal of Cleaner Production, 2022, 379: 134739. |
9 | WU Yuhua, XUE Kai, MA Qiaoling, et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials, 2021, 312: 110742. |
10 | GAO Shan, LIU Yinghui, YUE Xiuping. Sustainable and low-cost SUZ-4 synthesis and its application for Cd2+ removal[J]. Journal of Cleaner Production, 2021, 312: 127825. |
11 | GAO Shan, LIU Yinghui. Potassium-assisted synthesis of SUZ-4 zeolite as an efficient adsorbent for Pb2+ removal from wastewater[J]. Separation and Purification Technology, 2022, 286: 120438. |
12 | BELVISO Claudia, CAVALCANTE Francesco, NICEFORO Giancarlo, et al. Sodalite, faujasite and A-type zeolite from 2∶1 dioctahedral and 2∶1∶1 trioctahedral clay minerals. A singular review of synthesis methods through laboratory trials at a low incubation temperature[J]. Powder Technology, 2017, 320: 483-497. |
13 | HUANG Xunrong, ZHAO Hanghang, HU Xiongfei, et al. Optimization of preparation technology for modified coal fly ash and its adsorption properties for Cd2+ [J]. Journal of Hazardous Materials, 2020, 392: 122461. |
14 | YU Miao, LI Jian, WANG Lijuan. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption[J]. Chemical Engineering Journal, 2017, 310: 300-306. |
15 | 赵佳, 李圣洁, 吉文欣, 等. 机械活化煤气化细渣资源化利用及残碳燃烧反应动力学探究[J]. 环境化学, 2022, 41(3): 1052-1059. |
ZHAO Jia, LI Shengjie, JI Wenxin, et al. Mechanical activation and combustion kinetics of residual carbon in coal-gasification fine slag[J]. Environmental Chemistry, 2022, 41(3): 1052-1059. | |
16 | 程晓莹. 气化灰渣合成13X分子筛及其对重金属离子吸附性能的研究[D]. 淮南: 安徽理工大学, 2021. |
CHENG Xiaoying. Preparation of 13X zeolite from coal gasification slag and its adsorption performance for heavy metal ions[D]. Huainan: Anhui University of Science & Technology, 2021. | |
17 | LUO Hongwei, HE Dongqin, ZHU Weiping, et al. Humic acid-induced formation of tobermorite upon hydrothermal treatment with municipal solid waste incineration bottom ash and its application for efficient removal of Cu(Ⅱ) ions[J]. Waste Management, 2019, 84: 83-90. |
18 | THOMMES Matthias, KANEKO Katsumi, NEIMARK Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
19 | ZHOU Jianmin, ZHENG Feng, LI Hui, et al. Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance[J]. Chemical Engineering Journal, 2020, 381: 122698. |
20 | 高珊, 刘颖慧. SUZ-4分子筛的合成及其对亚甲基蓝的吸附[J]. 硅酸盐学报, 2021, 49(9): 2001-2008. |
GAO Shan, LIU Yinghui. Synthesis of SUZ-4 zeolite and its adsorption for methylene blue[J]. Journal of the Chinese Ceramic Society, 2021, 49(9): 2001-2008. | |
21 | FAGHIHIAN Hossein, NOURMORADI Heshmatollah, SHOKOUHI Maryam. Performance of silica aerogels modified with amino functional groups in PB(Ⅱ) and CD(Ⅱ) removal from aqueous solutions[J]. PJCT, 2012, 14(1): 50-56. |
22 | 陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(4): 934-937. |
CHEN Hesheng, SUN Zhenya, SHAO Jingchang. Investigation on FT-IR spectroscopy for eight different sources of SiO2 [J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 934-937. | |
23 | 王志学, 王彩丽, 王斌, 等. Mg(OH)2@粉煤灰复合材料对重金属离子的去除研究[J]. 中国环境科学, 2022, 42(12): 5713-5724. |
WANG Zhixue, WANG Caili, WANG Bin, et al. Study on removal of heavy metal ions by mg(OH)2 @ fly ash composite[J]. China Environmental Science, 2022, 42(12): 5713-5724. | |
24 | 王娜娜. 新型海绵状改性壳聚糖复合材料的制备及其对废水中Pb(Ⅱ)的净化应用研究[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2017. |
WANG Nana. Preparation and application of novel spongy modified chitosan adsorbents for the removal of Pb(Ⅱ) from wastewaters[D]. Harbin: Northeast Institute of Geography and Agroecology (Chinese Academy of Sciences), 2017. | |
25 | 刘秀芸, 王刚, 雷雨昕, 等. 巯基改性玉米秸秆对水中Cu(Ⅱ)的吸附特性[J]. 中国环境科学, 2022, 42(3): 1220-1229. |
LIU Xiuyun, WANG Gang, LEI Yuxin, et al. Adsorption performance and mechanism of mercaptoacetyl corn straw for Cu(Ⅱ) in aqueous solution[J]. China Environmental Science, 2022, 42(3): 1220-1229. | |
26 | DENG Hui, YANG Le, TAO Guanghui, et al. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1514-1521. |
27 | SAHU Sumanta, KAR Padmaja, BISHOYI Nisarani, et al. Synthesis of polypyrrole-modified layered double hydroxides for efficient removal of Cr(Ⅵ)[J]. Journal of Chemical & Engineering Data, 2019, 64(10): 4357-4368. |
28 | MOMINA, MOHAMMAD Shahadat, SUZYLAWATI Isamil. Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating[J]. Journal of Water Process Engineering, 2020, 34: 101155. |
[1] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
[2] | 周渝, 唐甜, 熊子悠, 韦奇. 基于两级微通道分离工艺的甲醇制烯烃废水深度处理[J]. 化工进展, 2025, 44(1): 100-108. |
[3] | 杨润农, 白帆飞, 林梓荣, 孙永明, 尹祥. 分子筛吸附脱除有机硫的研究进展[J]. 化工进展, 2025, 44(1): 329-340. |
[4] | 田晴, 刘青盟, 李方, 杨波, 张思远, 关自良. 细菌的耐盐调控及其在高盐生物脱氮除磷工艺中的应用[J]. 化工进展, 2025, 44(1): 465-476. |
[5] | 倪鹏, 王先泓, 黄钰涵, 马晓彤, 马子轸, 谈琰, 张华伟, 刘亭. 活性炭类和磁性金属类吸附剂喷射脱汞技术应用对比及最新进展[J]. 化工进展, 2025, 44(1): 513-524. |
[6] | 赵丽阳, 李倩, 何佩熹, 潘鸿辉, 刘艳, 刘细祥. 磷钼酸-Fe3O4球磨共改性污泥基生物炭对四环素的吸附特性[J]. 化工进展, 2025, 44(1): 583-595. |
[7] | 张炜, 黄赳, 朱晓芳, 李鹏. 凹凸棒石基钴钨水滑石吸附铅的性能及机理[J]. 化工进展, 2025, 44(1): 596-606. |
[8] | 周渝, 夏太阳, 韦奇, 唐甜, 田磊. 微通道耦合反渗透膜串联处理甲醇制烯烃废水工艺优化[J]. 化工进展, 2024, 43(S1): 43-51. |
[9] | 朱昊, 刘汉飞, 高源, 黄益平, 费孝诚, 韩卫清. 盐分对电催化降解性能与机理的影响[J]. 化工进展, 2024, 43(S1): 571-580. |
[10] | 石磊, 王倩, 赵晓胜, 刘宏臣, 车远军, 段玉, 李庆. 油页岩灰基分子筛的制备及对亚甲基蓝的吸附[J]. 化工进展, 2024, 43(S1): 650-661. |
[11] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
[12] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
[13] | 杨新衡, 纪志永, 郭志远, 刘萁, 张盼盼, 汪婧, 刘杰, 毕京涛, 赵颖颖, 袁俊生. 锂铝层状双金属氢氧化物的制备及其锂脱嵌过程[J]. 化工进展, 2024, 43(9): 5262-5274. |
[14] | 安芳芳, 曹少磊, 连增帅, 舒大武, 张岩, 李万新, 韩博. 十二烷基甜菜碱对热活化过硫酸钠降解C.I.活性黑5的影响[J]. 化工进展, 2024, 43(9): 5302-5308. |
[15] | 卞维柏, 张睿轩, 潘建明. 无机金属锂离子筛材料制备方法研究进展[J]. 化工进展, 2024, 43(8): 4173-4186. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 16
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |