化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6873-6882.DOI: 10.16085/j.issn.1000-6613.2023-2169
• 生物与医药化工 • 上一篇
徐凯1,2,3(), 崔金娜1,2,3, 刘占英1,2,3(
)
收稿日期:
2023-12-08
修回日期:
2024-04-04
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
刘占英
作者简介:
徐凯(2000—),男,硕士研究生,研究方向为生物化工。E-mail:xukain@163.com。
基金资助:
XU Kai1,2,3(), CUI Jinna1,2,3, LIU Zhanying1,2,3(
)
Received:
2023-12-08
Revised:
2024-04-04
Online:
2024-12-15
Published:
2025-01-11
Contact:
LIU Zhanying
摘要:
全球能源危机的升级使得开发可再生替代燃料变得更加迫切。一体化生物加工(consolidated bioprocessing,CBP)是一项整合了预处理、纤维素酶生产、纤维素水解糖化、己糖和戊糖发酵产醇四个单元操作为一体的生物加工技术,是降解木质纤维素生物质产纤维素乙醇最具前景的高效低成本策略。本文以细菌和真菌在CBP产纤维素乙醇中的研究为出发点,回顾了纤维素乙醇工业化的发展历程。综述了一体化生物加工技术中四种不同的策略,包括单菌CBP系统、自然微生物菌群、组合微生物群落、菌种代谢工程改造,系统总结了目前国内外报道的CBP底盘细菌与真菌的种类、发酵代谢特征及工程化和共培养策略,并论述了研究案例和发展现状。为新型功能菌株的选育和非粮生物燃料的发展提供理论依据。
中图分类号:
徐凯, 崔金娜, 刘占英. 一体化生物加工CBP产纤维乙醇研究进展[J]. 化工进展, 2024, 43(12): 6873-6882.
XU Kai, CUI Jinna, LIU Zhanying. Research progress in the production of cellulosic ethanol via consolidated bioprocessing[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6873-6882.
单菌/菌群 | 底物及底物浓度 | 预处理 | 乙醇产量/g·L-1 | 发酵时间/d | 参考文献 |
---|---|---|---|---|---|
Scheffersomyces shehatae JCM18690 | 100g/L淀粉 | — | 9.21 | 10 | [ |
白腐菌Bm-2 | 13.4g/L生粉 | — | 13 | 12 | [ |
白腐菌 | 20g/L稻草 | 球磨预处理 | 3.4 | 6 | [ |
宛氏拟青霉ATHUM 8891 | 27g/L葡萄糖木糖混合物 | — | 10.5 | 15 | [ |
Clostridium phytofermentans ATCC 700394 | 16.5g/L玉米芯 | 氨纤维爆破预处理 | 2.8 | 10 | [ |
热纤梭菌ATCC 31924 | 8g/L微晶纤维素 | — | 2.45 | 5 | [ |
HPP | 7g/L α-纤维素 | — | 2.5 | 6 | [ |
SV79 | 10g/L农业废弃物 | — | 2.63mmol/(L·g) | 7 | [ |
合成微生物群落 | 867g/kg麦秆总固形物 | — | 3.7 | 5 | [ |
表1 单菌CBP系统和自然微生物菌群案例及乙醇产量研究结果
单菌/菌群 | 底物及底物浓度 | 预处理 | 乙醇产量/g·L-1 | 发酵时间/d | 参考文献 |
---|---|---|---|---|---|
Scheffersomyces shehatae JCM18690 | 100g/L淀粉 | — | 9.21 | 10 | [ |
白腐菌Bm-2 | 13.4g/L生粉 | — | 13 | 12 | [ |
白腐菌 | 20g/L稻草 | 球磨预处理 | 3.4 | 6 | [ |
宛氏拟青霉ATHUM 8891 | 27g/L葡萄糖木糖混合物 | — | 10.5 | 15 | [ |
Clostridium phytofermentans ATCC 700394 | 16.5g/L玉米芯 | 氨纤维爆破预处理 | 2.8 | 10 | [ |
热纤梭菌ATCC 31924 | 8g/L微晶纤维素 | — | 2.45 | 5 | [ |
HPP | 7g/L α-纤维素 | — | 2.5 | 6 | [ |
SV79 | 10g/L农业废弃物 | — | 2.63mmol/(L·g) | 7 | [ |
合成微生物群落 | 867g/kg麦秆总固形物 | — | 3.7 | 5 | [ |
组合微生物体系 | 底物及底物浓度 | 预处理方法 | 乙醇产量/g·L-1 | 发酵时间/d | 参考文献 |
---|---|---|---|---|---|
梭菌属菌DBT-IOC-C19,梭菌属菌DBT-IOC-DC21,热厌氧菌DBT-IOC-X2 | 14.2g/L稻草 | 脱乙酰稀酸预处理 | 1.75 | 4 | [ |
热纤梭菌DSM1237,C. stercorarium DSM8532,T. thermohydrosulfuricus WC1 | 2g/L麦草 | 浸提 | 1.1 | 5 | [ |
热纤梭菌X514,热厌氧杆菌39E | 1%纤维素粉 | — | 2.76 | 4 | [ |
热纤梭菌ATCG 27405和毕赤酵母NCIM-3498 | 10g/L木材废料 | 碱处理 | 36.9 | 5 | [ |
C. phytofermentans和酿酒酵母cdt-1 | 100g/L α-纤维素 | — | 22 | 24 | [ |
运动发酵单胞菌,热带假丝酵母 | 123g/L果菜渣中还原糖 | 酶水解 | 54 | 24h | [ |
里氏木霉,酿酒酵母和树干毕赤酵母 | 17.5g/L小麦秸秆 | 稀酸预处理 | 9.8 | 6 | [ |
噬纤维梭菌743B,拜氏梭菌NCIMB 8052 | 68.6g/L玉米棒 | 碱处理 | 0.9 | 3 | [ |
表2 组合微生物群落案例及乙醇产量研究结果
组合微生物体系 | 底物及底物浓度 | 预处理方法 | 乙醇产量/g·L-1 | 发酵时间/d | 参考文献 |
---|---|---|---|---|---|
梭菌属菌DBT-IOC-C19,梭菌属菌DBT-IOC-DC21,热厌氧菌DBT-IOC-X2 | 14.2g/L稻草 | 脱乙酰稀酸预处理 | 1.75 | 4 | [ |
热纤梭菌DSM1237,C. stercorarium DSM8532,T. thermohydrosulfuricus WC1 | 2g/L麦草 | 浸提 | 1.1 | 5 | [ |
热纤梭菌X514,热厌氧杆菌39E | 1%纤维素粉 | — | 2.76 | 4 | [ |
热纤梭菌ATCG 27405和毕赤酵母NCIM-3498 | 10g/L木材废料 | 碱处理 | 36.9 | 5 | [ |
C. phytofermentans和酿酒酵母cdt-1 | 100g/L α-纤维素 | — | 22 | 24 | [ |
运动发酵单胞菌,热带假丝酵母 | 123g/L果菜渣中还原糖 | 酶水解 | 54 | 24h | [ |
里氏木霉,酿酒酵母和树干毕赤酵母 | 17.5g/L小麦秸秆 | 稀酸预处理 | 9.8 | 6 | [ |
噬纤维梭菌743B,拜氏梭菌NCIMB 8052 | 68.6g/L玉米棒 | 碱处理 | 0.9 | 3 | [ |
菌株 | 底物 | 代谢工程改造方法 | 研究结果 | 参考文献 |
---|---|---|---|---|
酿酒酵母K1-V116 | Whatman滤纸和玉米秸秆 | 整合编码纤维素酶的基因到葡萄酒酵母菌株的染色体rDNA和Delta区中 | 重组菌株在96h内发酵了63%的纤维素,乙醇产率(体积比)达到2.6% | [ |
酿酒酵母SR8A6S3 | 芒草 | 表达乙酰化乙醛脱氢酶(AADH)、乙酰辅酶A合成酶(ACS)和磷酸戊糖途径基因(Xyl1、Xyl2) | 乙酸解毒并增加NAD+消耗木糖,生产18.4%以上的乙醇 | [ |
酿酒酵母PE-2 | 未解毒硬木 | 过表达由基因HAA1编码的弱酸胁迫转录激活因子和由PRS3编码的磷酸核糖焦磷酸合成酶 | HAA1或PRS3过表达促进酵母生长和糖消耗,提高对乙酸的耐受性 | [ |
热纤梭菌DSM 1313 | 纤维二糖 | 删除Ⅰ型谷氨酰胺合成酶(glnA)减少氨同化 | 缬氨酸和总氨基酸水平分别降低53%和44%,乙醇产量增加53% | [ |
热纤梭菌 | 纤维二糖 | 过表达A. pasteurianus的PDC基因和T. saccharolyticum的adhA基因 | 用60g/L纤维素生产21.3g/L乙醇 | [ |
热纤梭菌 | 微晶纤维素 | 引入T. saccharolyticum的pforA基因和铁氧还蛋白 | 从100g/L微晶纤维素中产25g/L乙醇 | [ |
C.carboxidivorans P7 | 葡萄糖 | 过表达aor、adhE2、fnr和adhE2或aor基因 | 工程菌株比野生型菌株表现出更高乙醇产量 | [ |
噬纤维梭菌743B,拜氏梭菌NCIMB 8052 | 玉米棒 | 使用CRISPR干扰技术下调氢化酶基因,过表达有机酸同化基因(xylR)和戊糖利用基因(xylR) | 工程化的梭状芽孢杆菌可产生6.37g/L的乙醇 | [ |
表3 菌种代谢工程改造案例总结
菌株 | 底物 | 代谢工程改造方法 | 研究结果 | 参考文献 |
---|---|---|---|---|
酿酒酵母K1-V116 | Whatman滤纸和玉米秸秆 | 整合编码纤维素酶的基因到葡萄酒酵母菌株的染色体rDNA和Delta区中 | 重组菌株在96h内发酵了63%的纤维素,乙醇产率(体积比)达到2.6% | [ |
酿酒酵母SR8A6S3 | 芒草 | 表达乙酰化乙醛脱氢酶(AADH)、乙酰辅酶A合成酶(ACS)和磷酸戊糖途径基因(Xyl1、Xyl2) | 乙酸解毒并增加NAD+消耗木糖,生产18.4%以上的乙醇 | [ |
酿酒酵母PE-2 | 未解毒硬木 | 过表达由基因HAA1编码的弱酸胁迫转录激活因子和由PRS3编码的磷酸核糖焦磷酸合成酶 | HAA1或PRS3过表达促进酵母生长和糖消耗,提高对乙酸的耐受性 | [ |
热纤梭菌DSM 1313 | 纤维二糖 | 删除Ⅰ型谷氨酰胺合成酶(glnA)减少氨同化 | 缬氨酸和总氨基酸水平分别降低53%和44%,乙醇产量增加53% | [ |
热纤梭菌 | 纤维二糖 | 过表达A. pasteurianus的PDC基因和T. saccharolyticum的adhA基因 | 用60g/L纤维素生产21.3g/L乙醇 | [ |
热纤梭菌 | 微晶纤维素 | 引入T. saccharolyticum的pforA基因和铁氧还蛋白 | 从100g/L微晶纤维素中产25g/L乙醇 | [ |
C.carboxidivorans P7 | 葡萄糖 | 过表达aor、adhE2、fnr和adhE2或aor基因 | 工程菌株比野生型菌株表现出更高乙醇产量 | [ |
噬纤维梭菌743B,拜氏梭菌NCIMB 8052 | 玉米棒 | 使用CRISPR干扰技术下调氢化酶基因,过表达有机酸同化基因(xylR)和戊糖利用基因(xylR) | 工程化的梭状芽孢杆菌可产生6.37g/L的乙醇 | [ |
1 | PERIYASAMY Selvakumar, BEULA Isabel J, KAVITHA S, et al. Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol—A review[J]. Chemical Engineering Journal, 2023, 453: 139783. |
2 | DU Ran, YAN Jianbin, LI Shizhong, et al. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis [J]. Biotechnol Biofuels, 2015, 8(1): 10. |
3 | Edgar OLGUIN-MACIEL, Alfonso LARQUÉ-SAAVEDRA, LAPPE-OLIVERAS Patricia E, et al. Consolidated bioprocess for bioethanol production from raw flour of Brosimum alicastrum seeds using the native strain of Trametes hirsuta Bm-2[J]. Microorganisms, 2019, 7(11): 483. |
4 | YAN Qiang, FONG Stephen S. Challenges and advances for genetic engineering of non-model bacteria and uses in consolidated bioprocessing[J]. Frontiers in Microbiology, 2017, 8: 2060. |
5 | SINGHANIA Reeta Rani, PATEL Anil Kumar, SINGH Anusuiya, et al. Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges[J]. Bioresource Technology, 2022, 354: 127153. |
6 | Edgar OLGUIN-MACIEL, SINGH Anusuiya, Rubi CHABLE-VILLACIS, et al. Consolidated bioprocessing, an innovative strategy towards sustainability for biofuels production from crop residues: An overview[J]. Agronomy, 2020, 10(11): 1834. |
7 | PARISUTHAM Vinuselvi, KIM Tae Hyun, LEE Sung Kuk. Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production[J]. Bioresource Technology, 2014, 161: 431-440. |
8 | CHINN Mari, MBANEME Veronica. Consolidated bioprocessing for biofuel production: Recent advances[J]. Energy and Emission Control Technologies, 2015: 23. |
9 | TANIMURA Ayumi, KIKUKAWA Minako, YAMAGUCHI Shino, et al. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing[J]. Scientific Reports, 2015, 5: 9593. |
10 | OKAMOTO Kenji, NITTA Yasuyuki, MAEKAWA Nitaro, et al. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta [J]. Enzyme and Microbial Technology, 2011, 48(3): 273-277. |
11 | ZERVA A, SAVVIDES A L, KATSIFAS E A, et al. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing[J]. Bioresour Technol, 2014, 162: 294-299. |
12 | JIN Mingjie, BALAN Venkatesh, GUNAWAN Christa, et al. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production[J]. Biotechnology and Bioengineering, 2011, 108(6): 1290-1297. |
13 | SINGH Nisha, MATHUR Anshu S, GUPTA Ravi P, et al. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924[J]. Bioresource Technology, 2018, 250: 860-867. |
14 | 许从峰, 张方政, 张伟, 等. 合成微生物群落用于木质纤维素生物质转化的研究进展[J]. 微生物学通报, 2020, 47(10): 3431-3441. |
XU Congfeng, ZHANG Fangzheng, ZHANG Wei, et al. Synthetic microbial consortia for lignocellulosic biomass conversion[J]. Microbiology China, 2020, 47(10): 3431-3441. | |
15 | VERSTRAETE W, WITTEBOLLE L, HEYLEN K, et al. Microbial resource management: The road to go for environmental biotechnology[J]. Engineering in Life Sciences, 2007, 7(2): 117-126. |
16 | MARZORATI Massimo, WITTEBOLLE Lieven, BOON Nico, et al. How to get more out of molecular fingerprints: Practical tools for microbial ecology[J]. Environmental Microbiology, 2008, 10(6): 1571-1581. |
17 | KINET R, DESTAIN J, HILIGSMANN S, et al. Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: Toward a microbial resource management approach[J]. Bioresource Technology, 2015, 189: 138-144. |
18 | GAO Zhaoming, XU Xun, RUAN Lingwei. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 465-474. |
19 | ZHAO Chao, DENG Yunjin, WANG Xingna, et al. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops[J]. Journal of Microbiology and Biotechnology, 2014, 24(9): 1280-1290. |
20 | 刘建斌, 武凤霞, 张淑彬, 等. 高温纤维素分解菌群PN-8的筛选及微生物组成研究[J]. 中国农学通报, 2017, 33(35): 50-56. |
LIU Jianbin, WU Fengxia, ZHANG Shubin, et al. Screening and microbial component of a thermophilic, cellulose-degradation bacterial community PN-8[J]. Chinese Agricultural Science Bulletin, 2017, 33(35): 50-56. | |
21 | Idania VALDEZ-VAZQUEZ, Marisol PÉREZ-RANGEL, TAPIA Adán, et al. Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium [J]. Fuel, 2015, 159: 214-222. |
22 | LI Junfeng, WU Yongjie, ZHAO Jie, et al. Bioaugmented degradation of rice straw combining two novel microbial consortia and lactic acid bacteria for enhancing the methane production[J]. Bioresource Technology, 2022, 344: 126148. |
23 | ZUROFF Trevor R, XIQUES Salvador Barri, CURTIS Wayne R. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture[J]. Biotechnology for Biofuels, 2013, 6(1): 59. |
24 | 庞建, 刘占英, 郝敏, 等. 添加稀土离子提高嗜热梭菌发酵微晶纤维素生产乙醇的产率[J]. 稀土, 2016, 37(3): 134-139. |
PANG Jian, LIU Zhanying, HAO Min, et al. Rare earth ions improve yield of ethanol produced with C. thermocellum on avicel[J]. Chinese Rare Earths, 2016, 37(3): 134-139. | |
25 | XIE Zhijie, MENG Xianghui, DING Hongxia, et al. The synergistic effect of rumen cellulolytic bacteria and activated carbon on thermophilic digestion of cornstalk[J]. Bioresour Technol, 2021, 338: 125566. |
26 | HE Qiang, HEMME Christopher L, JIANG Helong, et al. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp[J]. Bioresource Technology, 2011, 102(20): 9586-9592. |
27 | Hongyi LYU, CHEN Jing, WANG Mengyi, et al. Recycling cinder in efficient methane production from wheat straw via solid-state anaerobic digestion (SS-AD)[J]. Chemical Engineering Journal, 2023, 462: 142231. |
28 | SINGH Nisha, MATHUR Anshu S, TULI Deepak K, et al. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring[J]. Biotechnology for Biofuels, 2017, 10: 73. |
29 | FROESE Alan G, SPARLING Richard. Cross-feeding and wheat straw extractives enhance growth of Clostridium thermocellum-containing co-cultures for consolidated bioprocessing[J]. Bioprocess and Biosystems Engineering, 2021, 44(4): 819-830. |
30 | TAHA Mohamed, SHAHSAVARI Esmaeil, Khalid AL-HOTHALY, et al. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms[J]. Applied Biochemistry and Biotechnology, 2015, 175(8): 3709-3728. |
31 | ALTHURI Avanthi, VENKATA MOHAN S. Sequential and consolidated bioprocessing of biogenic municipal solid waste: A strategic pairing of thermophilic anaerobe and mesophilic microaerobe for ethanol production[J]. Bioresource Technology, 2020, 308: 123260. |
32 | PATLE S, LAL B. Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis [J]. Biotechnol Lett, 2007, 29(12): 1839-1843. |
33 | BRETHAUER Simone, STUDER Michael Hanspeter. Consolidated bioprocessing of lignocellulose by a microbial consortium[J]. Energy & Environmental Science, 2014, 7(4): 1446-1453. |
34 | WEN Zhiqiang, WU Mianbin, LIN Yijun, et al. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans [J]. Microbial Cell Factories, 2014, 13(1): 92. |
35 | QIAN Xiujuan, CHEN Lin, SUI Yuan, et al. Biotechnological potential and applications of microbial consortia[J]. Biotechnology Advances, 2020, 40: 107500. |
36 | BAO Teng, JIANG Wenyan, AHMAD Qurat-ul-Ain, et al. Consolidated bioprocessing for ethanol and butanol production from lignocellulosic biomass: Recent advances in strain and process engineering[M]//A-Z of biorefinery. Elsevier, 2022: 473-506. |
37 | CUNHA J T, ROMANÍ A, COSTA C E, et al. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions[J]. Applied Microbiology and Biotechnology, 2019, 103(1): 159-175. |
38 | KHRAMTSOV Nikolai, MCDADE Luise, AMERIK Alexander, et al. Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(17): 8310-8313. |
39 | ZHANG Guochang, KONG In Iok, WEI Na, et al. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast[J]. Biotechnology and Bioengineering, 2016, 113(12): 2587-2596. |
40 | CUNHA Joana T, COSTA Carlos E, FERRAZ Luís, et al. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: Unravelling the underlying mechanisms[J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4589-4600. |
41 | Jianfa OU, XU Ningning, ERNST Patrick, et al. Process engineering of cellulosic n-butanol production from corn-based biomass using Clostridium cellulovorans [J]. Process Biochemistry, 2017, 62: 144-150. |
42 | SALEHI JOUZANI Gholamreza, TAHERZADEH Mohammad J. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: A comprehensive review[J]. Biofuel Research Journal, 2015: 152-195. |
43 | RYDZAK Thomas, LYND Lee R, GUSS Adam M. Elimination of formate production in Clostridium thermocellum [J]. Journal of Industrial Microbiology and Biotechnology, 2015, 42(9): 1263-1272. |
44 | BISWAS Ranjita, ZHENG Tianyong, OLSON Daniel G, et al. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum [J]. Biotechnology for Biofuels, 2015, 8: 20. |
45 | FROESE Alan Grant, NGUYEN Tran-Nguyen, AYELE Belay T, et al. Digestibility of wheat and cattail biomass using a co-culture of thermophilic anaerobes for consolidated bioprocessing[J]. BioEnergy Research, 2020, 13(1): 325-333. |
46 | BISWAS Ranjita, PRABHU Sandeep, LYND Lee R, et al. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum [J]. PLoS One, 2014, 9(2): e86389. |
47 | RYDZAK Thomas, GARCIA David, STEVENSON David M, et al. Deletion of Type Ⅰ glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum [J]. Metabolic Engineering, 2017, 41: 182-191. |
48 | TIAN Liang, PEROT Skyler J, Shuen HON, et al. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase[J]. Microbial Cell Factories, 2017, 16(1): 171. |
49 | Shuen HON, HOLWERDA Evert K, WORTHEN Robert S, et al. Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production[J]. Biotechnology for Biofuels, 2018, 11: 242. |
50 | CHENG Chi, LI Weiming, LIN Meng, et al. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose[J]. Bioresource Technology, 2019, 284: 415-423. |
51 | WEN Zhiqiang, MINTON Nigel P, ZHANG Ying, et al. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium[J]. Metabolic Engineering, 2017, 39: 38-48. |
52 | MALEKI Fatemeh, CHANGIZIAN Mohammad, ZOLFAGHARI Narges, et al. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains[J]. Scientific Reports, 2021, 11(1): 13731. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[3] | 刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
[4] | 石佳博, 张宇轩, 陈雪峰, 谭蕉君. 单宁酸-纳米协同改性胶原纤维多孔材料的制备及其油水分离性能[J]. 化工进展, 2024, 43(8): 4624-4629. |
[5] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
[6] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
[7] | 江慧珍, 罗凯, 王艳, 费华, 吴登科, 叶卓铖, 曹雄金. 废弃生物质复合相变材料的构建与应用[J]. 化工进展, 2024, 43(7): 3934-3945. |
[8] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
[9] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
[10] | 龚雪梅, 蒋军, 王超, 梅长彤. 纳米纤维素疏水改性及其功能化应用研究进展[J]. 化工进展, 2024, 43(6): 3187-3198. |
[11] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
[12] | 谢国平, 谭雪松, 刘鹏, 苗长林, 许光文, 庄新姝. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358. |
[13] | 蓝瑞嵩, 刘丽华, 张倩, 陈博彦, 洪俊明. 硫掺杂石墨烯作为MFC阴极性能和生物毒性检测[J]. 化工进展, 2024, 43(6): 3430-3439. |
[14] | 何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050. |
[15] | 韩伟, 韩恒文, 程薇, 汤玮健. 碳中和目标驱动下生物质燃料技术研究进展[J]. 化工进展, 2024, 43(5): 2463-2474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |