化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5441-5456.DOI: 10.16085/j.issn.1000-6613.2023-1675
• 能源加工与技术 • 上一篇
黄旭锐1(), 雷金勇1, 潘军1, 于丰源1, 许余浩2, 涂正凯2
收稿日期:
2023-09-21
修回日期:
2023-10-16
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
黄旭锐
作者简介:
黄旭锐(1991—),男,硕士,工程师,研究方向为电氢耦合系统、综合能源。E-mail:huangxurui@hotmail.com。
基金资助:
HUANG Xurui1(), LEI Jinyong1, PAN Jun1, YU Fengyuan1, XU Yuhao2, TU Zhengkai2
Received:
2023-09-21
Revised:
2023-10-16
Online:
2024-10-15
Published:
2024-10-29
Contact:
HUANG Xurui
摘要:
氢能作为一种清洁能源,不但具备清洁的利用过程,还能够与间歇性可再生能源有效结合,达到节能减排的重要效果。作为一种能够有效利用和制造氢能的装置,可逆固体氧化物电池(reversible solid oxide cell,RSOC)拥有燃料电池和电解槽两种运行模式,引起了广泛关注。RSOC的流场结构对其性能具有重要影响,具体表现为流道形状、尺寸及气体配置对RSOC内部气体流动特性的影响,均匀的气体分布及优异的扩散过程有利于电池输出性能及稳定性的提升。本综述总结了RSOC平行、蛇形、交指等传统流场与X形、三维网状等新型流场的结构特点及其电池输出特性,并对现有相关流场优化方式的研究进行了详细的分析和讨论,以全面概述该领域的最新进展。结果显示,针对RSOC内部气体流动特性可以通过优化温度、压强、气体流量等运行条件,选择合适的电解质、电极结构参数,阴阳极气流配置,以及设置流道障碍物等方式改进传统流场,促进气体传质与扩散过程;同时设计新型流场结构及多孔介质流场也是改善气体流动状态的一种方式。
中图分类号:
黄旭锐, 雷金勇, 潘军, 于丰源, 许余浩, 涂正凯. 可逆固体氧化物电池流场设计及优化的研究进展与展望[J]. 化工进展, 2024, 43(10): 5441-5456.
HUANG Xurui, LEI Jinyong, PAN Jun, YU Fengyuan, XU Yuhao, TU Zhengkai. Research progress and prospects on flow field design and optimization of reversible solid oxide cells[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5441-5456.
1 | 邹洋, 王剑晓, 戴璟, 等. 欧洲能源危机成因、影响与应对措施[J]. 电力系统自动化, 2023, 47(17): 1-13. |
ZOU Yang, WANG Jianxiao, DAI Jing, et al. Causes, impacts and mitigation measures of European energy crisis[J]. Automation of Electric Power Systems, 2023, 47(17): 1-13. | |
2 | YOLCAN Oguz Ozan. World energy outlook and state of renewable energy: 10-Year evaluation[J]. Innovation and Green Development, 2023, 2(4): 100070. |
3 | 张力菠, 吴一锴, 王群伟. 考虑碳中和目标与成本优化的可再生能源大规模发展规划[J]. 广东电力, 2023, 36(7): 31-39. |
ZHANG Libo, WU Yikai, WANG Qunwei. Large-scale development of renewable energy in consideration of carbon neutrality and cost optimization[J]. Guangdong Electric Power, 2023, 36(7): 31-39. | |
4 | 李洪言, 于淼, 郑一鸣, 等. 基于情景的2050年世界能源供需展望分析——基于《BP世界能源展望(2023年版)》[J]. 天然气与石油, 2023, 41(5): 131-137. . |
LI Hongyan, YU Miao, ZHENG Yiming, et al. Analysis on the outlook for global energy supply and demand in 2050 based on scenarios—Based on bp World Energy Outlook (2023 edition)[J]. Natural Gas and Oil, 2023, 41(5): 131-137. . | |
5 | KHAN Irfan, ZAKARI Abdulrasheed, DAGAR Vishal, et al. World energy trilemma and transformative energy developments as determinants of economic growth amid environmental sustainability[J]. Energy Economics, 2022, 108: 105884. |
6 | 张传捷. 碳中和的“变”与“坚持”——基于英国应对能源危机战略的思考[J]. 国际金融, 2023: (5): 38-43. |
ZHANG Chuanjie. "Change" and "persistence" of Carbon Neutralization—Thinking based on the UK’s strategy to deal with the energy crisis[J]. International Finance, 2023(5): 38-43. | |
7 | 骆钊, 刘德文, 贾芸睿, 等. 考虑绿色氢能证书和水电制氢的综合能源系统优化运行[J]. 电网技术, 2024, 48(4): 1445-1458. |
LUO Zhao, LIU Dewen, JIA Yunrui, et al. Optimal operation of integrated energy system considering green hydrogen certificate and hydrogen production by hydropower[J]. Power System Technology, 2024, 48(4): 1445-1458. | |
8 | 陈福, 陈兆民, 续芯如, 等. 氢能技术应用研究及发展方向[J]. 玻璃, 2023, 50(8): 6-10. |
CHEN Fu, CHEN Zhaomin, XU Xinru, et al. Green hydrogen industry development status and application[J]. Glass, 2023, 50(8): 6-10. | |
9 | 编辑部. “氢能走廊” 已初现雏形,加氢站发展前景广阔[J]. 汽车与配件, 2023(15): 55. |
BIAN Jibu. The "hydrogen energy corridor" has begun to take shape, and the development prospect of hydrogen refueling stations is broad[J]. Automobile & Parts, 2023(15): 55. | |
10 | 殷超凡, 刘峥嵘, 孙跃跃, 等. 质子导体型可逆固体氧化物电池材料的研究进展[J]. 硅酸盐学报, 2023, 51(10): 2700-2711. |
YIN Chaofan, LIU Zhengrong, SUN Yueyue, et al. Research progress on proton-conducting reversible solid oxide cells materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2700-2711. | |
11 | 黄祯媛, 高赐威, 陈涛, 等. 基于可逆固体氧化物电池的气电双向耦合统一调度优化[J]. 中国电机工程学报, 2024, 44(5): 1860-1872. |
HUANG Zhenyuan, GAO Ciwei, CHEN Tao, et al. Unified scheduling optimization of gas-electric bidirectional coupled system based on reversible solid oxide cells[J]. Proceedings of the CSEE, 2024, 44(5): 1860-1872. | |
12 | SHEN Minghai, AI Fujin, MA Hailing, et al. Progress and prospects of reversible solid oxide fuel cell materials[J]. iScience, 2021, 24(12): 103464. |
13 | 杨晓幸, 苗鹤, 袁金良. 可逆固体氧化物燃料电池氧电极材料的研究进展[J]. 化工进展, 2021, 40(9): 4904-4917. |
YANG Xiaoxing, MIAO He, YUAN Jinliang. Research progress on oxygen electrode materials for reversible solid oxide fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4904-4917. | |
14 | 朱冕, 赵加佩, 李欣珂, 等. 可逆固体氧化物燃料电池(rSOFC)技术的研究进展[J]. 电源技术, 2020, 44(3): 469-474. |
ZHU Mian, ZHAO Jiapei, LI Xinke, et al. Research status and prospects of reversible solid oxide fuel cell (rSOFC) technology[J]. Chinese Journal of Power Sources, 2020, 44(3): 469-474. | |
15 | MANSO A P, MARZO F F, BARRANCO J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15256-15287. |
16 | 白虎, 冯宇, 叶晓峰, 等. 平板型固体氧化物燃料电池的流场设计及优化概述[J]. 陶瓷学报, 2022, 43(1): 28-44. |
BAI Hu, FENG Yu, YE Xiaofeng, et al. Progress in flow field design and optimization of solid oxide fuel cells[J]. Journal of Ceramics, 2022, 43(1): 28-44. | |
17 | HSIEH Shou-Shing, YANG Shenghuang, KUO Jenn-Kun, et al. Study of operational parameters on the performance of micro PEMFCs with different flow fields[J]. Energy Conversion and Management, 2006, 47(13/14): 1868-1878. |
18 | 刘艺辉, 李世安, 魏荣强, 等. 固体氧化物燃料电池流道结构的研究进展[J]. 化学通报, 2021, 84(7): 698-703. |
LIU Yihui, LI Shian, WEI Rongqiang, et al. Research progress of flow channel structure of solid oxide fuel cell[J]. Chemistry, 2021, 84(7): 698-703. | |
19 | 陆佳宙, 夏玉珍, 雷航伟, 等. 质子交换膜燃料电池三种流场结构的性能研究[J]. 电源技术, 2023, 47(4): 502-504. |
LU Jiazhou, XIA yuzhen, LEI Hangwei, et al. Performance study of PEMFC with three different flow fields[J]. Chinese Journal of Power Sources, 2023, 47(4): 502-504. | |
20 | MANGLIK Raj M, MAGAR Yogesh N. Heat and mass transfer in planar anode-supported solid oxide fuel cells: Effects of interconnect fuel/oxidant channel flow cross section[J]. Journal of Thermal Science and Engineering Applications, 2015, 7(4): 041003. |
21 | KHAZAEE I, RAVA A. Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries[J]. Energy, 2017, 119: 235-244. |
22 | HESAMI Hanieh, BORJI Mehdi, REZAPOUR Javad. Three-dimensional numerical investigation on the effect of interconnect design on the performance of internal reforming planar solid oxide fuel cell[J]. Korean Journal of Chemical Engineering, 2021, 38(12): 2423-2435. |
23 | XU Yuhao, ZHANG Jian, TU Zhengkai. Numerical simulation of flow channel geometries optimization for the planar solid oxide electrolysis cell[J]. International Journal of Hydrogen Energy, 2024, 52: 288-301. |
24 | ZHANG Zhen, GUAN Chengzhi, XIE Leidong, et al. Design and analysis of a novel opposite trapezoidal flow channel for solid oxide electrolysis cell stack[J]. Energies, 2022, 16(1): 159. |
25 | BI Wuxi, CHEN Daifen, LIN Zijing. A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks[J]. International Journal of Hydrogen Energy, 2009, 34(9): 3873-3884. |
26 | LI Wenying, SHI Yixiang, LUO Yu, et al. Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: The effects of microstructure and thickness[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13738-13750. |
27 | 帅浚超, 沈檀, 蒋建华, 等. 多通道平板型固体氧化物燃料电池的逆流流场数值分析[J]. 陶瓷学报, 2017, 38(4): 460-465. |
SHUAI Junchao, SHEN Tan, JIANG Jianhua, et al. Numerical anylysis of multichannel counter-flow planar solid oxide fuel cell[J]. Journal of Ceramics, 2017, 38(4): 460-465. | |
28 | ZHAO Cheng, YANG Jiajun, ZHANG Tao, et al. Numerical modeling of manifold design and flow uniformity analysis of an external manifold solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14440-14451. |
29 | HUANG Hongyan, HAN Zhen, LU Siyu, et al. The analysis of structure parameters of MOLB type solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20351-20359. |
30 | RECKNAGLE K P, WILLIFORD R E, CHICK L A, et al. Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[J]. Journal of Power Sources, 2003, 113(1): 109-114. |
31 | KIM Youngjin, LEE Minchul. The influence of flow direction variation on the performance of a single cell for an anode-substrate flat-panel solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20369-20381. |
32 | 黄雕, 邵俊, 蔡熊峰. 流道数量及布置形式对SOFC性能的影响[J]. 北京汽车, 2020 (6): 6-10. |
HUANG Diao, SHAO Jun, CAI Xiongfeng. Influence of the number of flow channels and arrangement form on SOFC performance[J]. Beijing Automotive Engineering, 2020 (6): 6-10. | |
33 | 宋明, 马帅, 杜传胜, 等. 不同流道布置的平板式固体氧化物燃料电池蠕变损伤研究[J]. 机械工程学报, 2023, 59(10): 76-84. |
SONG Ming, MA Shuai, DU Chuansheng, et al. Creep damage of planar solid oxide fuel cell with different arrangements of flow channels[J]. Journal of Mechanical Engineering, 2023, 59(10), 76-84 | |
34 | XU Zonglei, ZHANG Xiongwen, LI Guojun, et al. Comparative performance investigation of different gas flow configurations for a planar solid oxide electrolyzer cell[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10785-10801. |
35 | 张磊. 流道形式对固体氧化物电解池共电解性能的影响机制研究[D]. 武汉: 华中科技大学, 2019. |
ZHANG Lei. Study on the influence mechanism of flow channel form on the co-electrolysis performance of solid oxide electrolysis cell[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
36 | BARATI Sara, KHOSHANDAM Behnam, GHAZI Mohsen Mehdipour. An investigation of channel blockage effects on hydrogen mass transfer in a proton exchange membrane fuel cell with various geometries and optimization by response surface methodology[J]. International Journal of Hydrogen Energy, 2018, 43(48): 21928-21939. |
37 | HAMRANG A, ABDOLLAHZADEH M, KERMANI M J, et al. Numerical simulation of the PEM fuel cell performance enhancement by various blockage arrangement of the cathode serpentine gas flow channel outlets/inlets[J]. International Journal of Heat Mass Transfer, 2022, 186: 122475. |
38 | YAHYA Abir, NAJI Hassane, DHAHRI Hacen. A lattice Boltzmann analysis of the performance and mass transport of a solid oxide fuel cell with a partially obstructed anode flow channel[J]. Fuel, 2023, 334: 126537. |
39 | CHELLEHBARI Yasinmehdizadeh, ADAVI Kazem, AMIN Javadsayyad, et al. A numerical simulation to effectively assess impacts of flow channels characteristics on solid oxide fuel cell performance[J]. Energy Conversion and Management, 2021, 244: 114280. |
40 | 徐琪, 缪馥星, 官万兵. 渐变型流道燃料电池热-电-力-化多场耦合数值模拟[J]. 力学季刊, 2023, 44(2): 316-328. |
XU Qi, MIAO Fuxing, GUAN Wanbing. Thermo-electro-mechanical-chemical multiphysics coupling model and numerical simulation on fuel cell with gradual flow channel[J]. Chinese Quarterly of Mechanics, 2023, 44(2): 316-328. | |
41 | 王珂, 李星辰, 王永庆, 等. 错列式流道固体氧化物燃料电池及其性能研究[J]. 电源技术, 2022, 46(12): 1438-1442. |
WANG Ke, LI Xingchen, WANG Yongqing, et al. Study on solid oxide fuel cell with staggered flow channel and its performance[J]. Chinese Journal of Power Sources, 2022, 46(12): 1438-1442. | |
42 | SAIED M, AHMED K, NEMAT-ALLA M, et al. Performance study of solid oxide fuel cell with various flow field designs: Numerical study[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20931-20946. |
43 | KONG Wei, HAN Zhen, LU Siyu, et al. A novel interconnector design of SOFC[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20329-20338. |
44 | XIA Lei, KHOSRAVI Ali, HAN Minfang, et al. Artificial intelligence based structural optimization of solid oxide fuel cell with three-dimensional reticulated trapezoidal flow field[J]. International Journal of Hydrogen Energy, 2023, 48(72): 28131-28149. |
45 | YUAN Wei, TANG Yong, YANG Xiaojun, et al. Porous metal materials for polymer electrolyte membrane fuel cells—A review[J]. Applied Energy, 2012, 94: 309-329. |
46 | VAZIFESHENAS Y, SEDIGHI K, SHAKERI M. Heat transfer in PEM cooling flow field with high porosity metal foam insert[J]. Applied Thermal Engineering, 2019, 147: 81-89. |
47 | HOSSAIN Mohammadsajid, SHABANI Bahman. Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 295: 275-291. |
48 | KANG Donggyun, LEE Dongkeun, CHOI Jongmin, et al. Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell[J]. Renewable Energy, 2020, 156: 931-941. |
49 | ZHAO Jianguo, LIN Zihan, ZHOU Mingjue. Three-dimensional modeling and performance study of high temperature solid oxide electrolysis cell with metal foam[J]. Sustainability, 2022, 14(12): 7046. |
50 | WANG Yang, DU Yingmeng, NI Meng, et al. Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell[J]. Applied Thermal Engineering, 2020, 172: 114959. |
51 | 詹若冰. 基于泡沫流场的固体氧化物燃料电池三维数值模拟[D]. 天津: 天津大学, 2019. |
ZHAN Ruobing. Three-dimensional numerical simulation of solid oxide fuel cell based on foam flow field[D]. Tianjin: Tianjin University, 2019. | |
52 | 方大为, 王凯, 颜冬, 等. 外气道SOFC电堆流场的优化设计和数值模拟[J]. 电源技术, 2013, 37(9): 1550-1553. |
FANG Dawei, WANG Kai, YAN Dong, et al. Optimization design and numerical simulation of flow field in external channel SOFC stack[J]. Power technology, 2013, 37(9): 1550-1553. |
[1] | 孙启超, 聂美华, 伍联营, 胡仰栋. 风光储一体化水电联产系统的优化设计及调度[J]. 化工进展, 2024, 43(9): 4882-4891. |
[2] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
[3] | 熊远帆, 李华山, 龚宇烈. 非共沸工质蒸发式冷凝器多目标优化设计[J]. 化工进展, 2024, 43(6): 2950-2960. |
[4] | 王东亮, 李婧玮, 孟文亮, 杨勇, 周怀荣, 范宗良. 二氧化碳加氢制甲醇过程碳氢利用率的影响因素与工艺优化分析[J]. 化工进展, 2024, 43(5): 2843-2850. |
[5] | 刘思宇, 杨卷, 陈培, 陈祖田, 闫斌, 刘育红, 邱介山. 富氮多孔碳纳米片的氮掺杂构型调控及其储锌性能[J]. 化工进展, 2024, 43(5): 2673-2683. |
[6] | 陈俊先, 刘震, 焦文磊, 张天钰, 吕家孟, 姬忠礼. 基于微波谐振原理的天然气管道内液滴浓度测量方法[J]. 化工进展, 2024, 43(2): 734-742. |
[7] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[8] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[9] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[10] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[11] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[12] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[13] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[14] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[15] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |