1 |
余翠, 武琳, 陈忠, 等. 双酚S对高脂饮食斑马鱼脂代谢的影响及机制[J]. 南京医科大学学报(自然科学版), 2020, 40(7): 981-985, 1020.
|
|
YU Cui, WU Lin, CHEN Zhong, et al. Effects and mechanism of BPS on lipid metabolism of zebrafish with high-fat diet[J]. Journal of Nanjing Medical University (Natural Sciences), 2020, 40(7): 981-985, 1020.
|
2 |
YAMAZAKI Eriko, YAMASHITA Nobuyoshi, TANIYASU Sachi, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122: 565-572.
|
3 |
JIN Hangbiao, ZHU Lingyan. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China[J]. Water Research, 2016, 103: 343-351.
|
4 |
JI Kyunghee, HONG Seongjin, Younglim KHO, et al. Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish[J]. Environmental Science & Technology, 2013, 47(15): 8793-8800.
|
5 |
HUANG Wei, ZHU Lin, ZHAO Chao, et al. Integration of proteomics and metabolomics reveals promotion of proliferation by exposure of bisphenol S in human breast epithelial MCF-10A cells[J]. The Science of the Total Environment, 2020, 712: 136453.
|
6 |
GOYAL Nitin, BARMAN Sanghamitra, BULASARA Vijaya Kumar. Efficient removal of bisphenol S from aqueous solution by synthesized nano-zeolite secony mobil-5[J]. Microporous and Mesoporous Materials, 2018, 259: 184-194.
|
7 |
PELAIA Tiana, RUBIN Alexander M, SEEBACHER Frank. Bisphenol S reduces locomotor performance and modifies muscle protein levels but not mitochondrial bioenergetics in adult zebrafish[J]. Aquatic Toxicology, 2023, 257: 106440.
|
8 |
IKE M, CHEN M Y, DANZL E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions[J]. Water Science and Technology, 2006, 53(6): 153-159.
|
9 |
XUE Jingchuan, KANNAN Kurunthachalam. Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA[J]. Science of the Total Environment, 2019, 648: 442-449.
|
10 |
李林, 朱登贵, 孙淑敏, 等. 普鲁士蓝及其类似物作为钠离子电池正极材料的研究进展[J]. 分子科学学报, 2023, 39(1): 1-10.
|
|
LI Lin, ZHU Denggui, SUN Shumin, et al. Research progress of Prussian blue and its analogues as cathode materials for sodium ion batteries[J]. Journal of Molecular Science, 2023, 39(1): 1-10.
|
11 |
董沛沛, 冯永强, 王潇, 等. 多孔普鲁士蓝类似物的合成及电催化析氧性能[J]. 精细化工, 2021, 38(4): 823-829.
|
|
DONG Peipei, FENG Yongqiang, WANG Xiao, et al. Synthesis of porous Prussian-blue analogues and electrocatalytic properties for oxygen evolution reaction[J]. Fine Chemicals, 2021, 38(4): 823-829.
|
12 |
黎素, 张博, 谢春生, 等. Bi-FeC2O4复合催化剂活化过硫酸盐降解罗丹明B[J]. 环境科学学报, 2021, 41(7): 2796-2805.
|
|
LI Su, ZHANG Bo, XIE Chunsheng, et al. Catalytic degradation of Rhodamine B by Bi-FeC2O4 composite activated persulfate[J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2796-2805.
|
13 |
李英豪, 郑向前, 高晓亚, 等. CoFe2O4的制备及其活化过一硫酸盐降解磺胺甲噁唑[J]. 精细化工, 2022, 39(5): 1020-1027.
|
|
LI Yinghao, ZHENG Xiangqian, GAO Xiaoya, et al. Preparation of CoFe2O4 and its peroxymonosulfate activation for degradation of sulfamethoxazole[J]. Fine Chemicals, 2022, 39(5): 1020-1027.
|
14 |
NIU Lijun, ZHANG Guangming, XIAN Guang, et al. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: Performance, activation mechanism and degradation pathway[J]. Separation and Purification Technology, 2021, 259: 118156.
|
15 |
YANG Youwei, GUO Changsheng, ZENG Yiting, et al. Peroxymonosulfate activation by CuFe-Prussian blue analogues for the degradation of bisphenol S: Effect, mechanism, and pathway[J]. Chemosphere, 2023, 331: 138748.
|
16 |
LAI Leiduo, YAN Jianfei, LI Jun, et al. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 343: 676-688.
|
17 |
王磊, 成先雄, 连军锋, 等. 尖晶石型c-CuFe2O4催化过硫酸盐降解偶氮染料[J]. 精细化工, 2021, 38(10): 2117-2124.
|
|
WANG Lei, CHENG Xianxiong, LIAN Junfeng, et al. Degradation of azo dye by catalyzed persulfate with spinel c-CuFe2O4 [J]. Fine Chemicals, 2021, 38(10): 2117-2124.
|
18 |
GHANBARI Farshid, MORADI Mahsa. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62.
|
19 |
甄建政,聂士松,潘世元, 等.多维度碳基负载金属催化剂活化PMS降解水中污染物的研究进展[J].化工进展,2022,41(4):1858-1872.
|
|
ZHEN Jianzheng, NIE Shisong, PAN Shiyuan, et al. Research progress on advanced activation of peroxymonosulfate by multidimensional carbon-supported metal catalyst for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1858-1872.
|
20 |
HUANG Yaohui, HUANG Yi-Fong, HUANG Chuning, et al. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1110-1118.
|
21 |
董康妮, 谢更新, 晏铭, 等. 磺化生物炭活化过硫酸盐去除水中盐酸四环素[J]. 中国环境科学, 2022, 42(8): 3650-3657.
|
|
DONG Kangni, XIE Gengxin, YAN Ming, et al. Removal of tetracycline hydrochloride from aqueous solutions by sulfonated biochar-activated persulfate[J]. China Environmental Science, 2022, 42(8): 3650-3657.
|
22 |
HAMMOUDA Samia Ben, ZHAO Feiping, SAFAEI Zahra, et al. Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: Influence of co-existing chemicals and UV irradiation[J]. Applied Catalysis B: Environmental, 2018, 233: 99-111.
|
23 |
LOU Xiaoyi, WU Liuxi, GUO Yaoguang, et al. Peroxymonosulfate activation by phosphate anion for organics degradation in water[J]. Chemosphere, 2014, 117: 582-585.
|
24 |
ZHANG Tao, ZHU Haibo, Jean-Philippe CROUÉ. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism[J]. Environmental Science & Technology, 2013, 47(6): 2784-2791.
|
25 |
朱紫琦, 李立, 徐铭骏, 等. 菱形片状铁锰催化剂活化过硫酸盐降解四环素[J]. 中国环境科学, 2021, 41(11): 5142-5152.
|
|
ZHU Ziqi, LI Li, XU Mingjun, et al. Rhombic sheet iron-manganese catalyst-activating peroxymonosulfate for tetracycline degradation[J]. China Environmental Science, 2021, 41(11): 5142-5152.
|
26 |
徐铭骏, 郭兆春, 李立, 等. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2): 1043-1053.
|
|
XU Mingjun, GUO Zhaochun, LI Li, et al. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1043-1053.
|
27 |
LU Hongtao, SUI Minghao, YUAN Bojie, et al. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals[J]. Chemical Engineering Journal, 2019, 357: 140-149.
|
28 |
XU Haodan, WANG Da, MA Jun, et al. A superior active and stable spinel sulfide for catalytic peroxymonosulfate oxidation of bisphenol S[J]. Applied Catalysis B: Environmental, 2018, 238: 557-567.
|
29 |
HU Enlai, FENG Yafei, NAI Jianwei, et al. Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting[J]. Energy & Environmental Science, 2018, 11(4): 872-880.
|
30 |
LI Miaoqing, LUO Rui, WANG Chaohai, et al. Iron-tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation[J]. Chemical Engineering Journal, 2019, 372: 774-784.
|
31 |
ZHU Shijun, WANG Wei, XU Yongpeng, et al. Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2019, 365: 99-110.
|
32 |
GUO Ruonan, CHEN Ying, NENGZI Lichao, et al. In situ preparation of carbon-based Cu-Fe oxide nanoparticles from CuFe Prussian blue analogues for the photo-assisted heterogeneous peroxymonosulfate activation process to remove lomefloxacin[J]. Chemical Engineering Journal, 2020, 398: 125556.
|
33 |
LU Sen, WANG Guanlong, CHEN Shuo, et al. Heterogeneous activation of peroxymonosulfate by LaCo1- x Cu x O3 perovskites for degradation of organic pollutants[J]. Journal of Hazardous Materials, 2018, 353: 401-409.
|
34 |
胡明珠. 钴铁双金属催化剂活化过硫酸盐降解有机污染物的性能与机理[D]. 杭州: 浙江大学, 2021.
|
|
HU Mingzhu. Performance and mechanism of cobalt-iron bimetallic catalyst activating persulfate to degrade organic pollutants[D]. Hangzhou: Zhejiang University, 2021.
|
35 |
WANG Bingyu, LI Qiaoqiao, LV Ying, et al. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation[J]. Chemical Engineering Journal, 2021, 416: 129162.
|
36 |
LIU Yang, GUO Hongguang, ZHANG Yongli, et al. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation[J]. Environmental Pollution, 2019, 252: 1042-1050.
|
37 |
CAI Jing, ZHANG Yan. Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron[J]. Environmental Science and Pollution Research, 2022, 29(6): 8281-8293.
|
38 |
WEI Junyan, YIN Linning, QU Ruijuan, et al. Experimental and quantum chemical study on the transformation behavior of bisphenol S by radical-driven persulfate oxidation[J]. Environmental Science: Water Research & Technology, 2022, 8(1): 116-126.
|
39 |
SHAO Penghui, DUAN Xiaoguang, XU Jun, et al. Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S[J]. Journal of Hazardous Materials, 2017, 322: 532-539.
|
40 |
HUANG Quanlong, CHEN Congjin, ZHAO Xilian, et al. Malachite green degradation by persulfate activation with CuFe2O4@biochar composite: Efficiency, stability and mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105800.
|