化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6676-6686.DOI: 10.16085/j.issn.1000-6613.2023-0803
• 资源与环境化工 • 上一篇
杨有威1,2,3(), 曾亦婷1,2, 郭昌胜3, 罗玉霞1,2, 高艳1,2, 王春英1,2(
)
收稿日期:
2023-05-15
修回日期:
2023-07-21
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
王春英
作者简介:
杨有威(1998—),男,硕士研究生,研究方向为废水处理与资源化技术。E-mail:1287476942@qq.com。
基金资助:
YANG Youwei1,2,3(), ZENG Yiting1,2, GUO Changsheng3, LUO Yuxia1,2, GAO Yan1,2, WANG Chunying1,2(
)
Received:
2023-05-15
Revised:
2023-07-21
Online:
2023-12-25
Published:
2024-01-08
Contact:
WANG Chunying
摘要:
通过简单共沉淀法合成了类普鲁士蓝化合物(CoFe-PBA),用于活化过一硫酸盐(PMS)降解有机污染物双酚S(BPS)。使用扫描电镜、X射线衍射、X射线光电子能谱等手段对CoFe-PBA进行表征,结果表明CoFe-PBA由紧密结合的Co3[Fe(CN)6]2构成,为纳米级,表面均匀分布着C、Fe、Co、O元素,具有丰富的活性位点。催化剂投加量300mg/L、PMS投加量400mg/L、pH=5.89条件下,CoFe-PBA/PMS降解体系40min内去除73.77%的BPS,对酸性和共存离子(SO42-、NO3-和Cl-)敏感,碱性环境能促进PMS快速活化,重复实验显示该体系具有良好稳定性,使用4次后仅下降26.70%,活化性能优于其他材料。机理分析表明,CoFe-PBA与PMS相互作用,作用过程中改变了金属位点价态,发生电子转移,产生各种活性物质降解BPS,其主要作用活性物种为1O2;产物分析表明,在CoFe-PBA活化PMS系统中,BPS可历经三种路径最终转化为开环产物及CO2和H2O。本研究通过低耗能、低成本、快速简易的方法制备CoFe-PBA,可为活化PMS绿色降解BPS提供思路。
中图分类号:
杨有威, 曾亦婷, 郭昌胜, 罗玉霞, 高艳, 王春英. 类普鲁士蓝的制备及其活化PMS降解双酚S[J]. 化工进展, 2023, 42(12): 6676-6686.
YANG Youwei, ZENG Yiting, GUO Changsheng, LUO Yuxia, GAO Yan, WANG Chunying. Preparation of Prussian blue and its activation of PMS for degrading bisphenol S[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6676-6686.
污染物 | 浓度 /mg·L-1 | 去除时间 /min | 去除率 /% | 去除速率 /mg·min-1 | 参考文献 |
---|---|---|---|---|---|
双酚S | 20.0 | 40 | 73.77 | 0.3689 | 本文 |
双酚S | 20.0 | 120 | 84.5 | 0.1408 | [ |
双酚S | 5.0 | 30 | 97.7 | 0.1628 | [ |
双酚S | 5.0 | 60 | 92.8 | 0.0773 | [ |
双酚S | 2.5 | 90 | 100.0 | 0.0278 | [ |
双酚S | 10.0 | 150 | 97.0 | 0.0647 | [ |
表1 其他类可活化过硫酸盐降解双酚S的实验对比
污染物 | 浓度 /mg·L-1 | 去除时间 /min | 去除率 /% | 去除速率 /mg·min-1 | 参考文献 |
---|---|---|---|---|---|
双酚S | 20.0 | 40 | 73.77 | 0.3689 | 本文 |
双酚S | 20.0 | 120 | 84.5 | 0.1408 | [ |
双酚S | 5.0 | 30 | 97.7 | 0.1628 | [ |
双酚S | 5.0 | 60 | 92.8 | 0.0773 | [ |
双酚S | 2.5 | 90 | 100.0 | 0.0278 | [ |
双酚S | 10.0 | 150 | 97.0 | 0.0647 | [ |
1 | 余翠, 武琳, 陈忠, 等. 双酚S对高脂饮食斑马鱼脂代谢的影响及机制[J]. 南京医科大学学报(自然科学版), 2020, 40(7): 981-985, 1020. |
YU Cui, WU Lin, CHEN Zhong, et al. Effects and mechanism of BPS on lipid metabolism of zebrafish with high-fat diet[J]. Journal of Nanjing Medical University (Natural Sciences), 2020, 40(7): 981-985, 1020. | |
2 | YAMAZAKI Eriko, YAMASHITA Nobuyoshi, TANIYASU Sachi, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122: 565-572. |
3 | JIN Hangbiao, ZHU Lingyan. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China[J]. Water Research, 2016, 103: 343-351. |
4 | JI Kyunghee, HONG Seongjin, Younglim KHO, et al. Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish[J]. Environmental Science & Technology, 2013, 47(15): 8793-8800. |
5 | HUANG Wei, ZHU Lin, ZHAO Chao, et al. Integration of proteomics and metabolomics reveals promotion of proliferation by exposure of bisphenol S in human breast epithelial MCF-10A cells[J]. The Science of the Total Environment, 2020, 712: 136453. |
6 | GOYAL Nitin, BARMAN Sanghamitra, BULASARA Vijaya Kumar. Efficient removal of bisphenol S from aqueous solution by synthesized nano-zeolite secony mobil-5[J]. Microporous and Mesoporous Materials, 2018, 259: 184-194. |
7 | PELAIA Tiana, RUBIN Alexander M, SEEBACHER Frank. Bisphenol S reduces locomotor performance and modifies muscle protein levels but not mitochondrial bioenergetics in adult zebrafish[J]. Aquatic Toxicology, 2023, 257: 106440. |
8 | IKE M, CHEN M Y, DANZL E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions[J]. Water Science and Technology, 2006, 53(6): 153-159. |
9 | XUE Jingchuan, KANNAN Kurunthachalam. Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA[J]. Science of the Total Environment, 2019, 648: 442-449. |
10 | 李林, 朱登贵, 孙淑敏, 等. 普鲁士蓝及其类似物作为钠离子电池正极材料的研究进展[J]. 分子科学学报, 2023, 39(1): 1-10. |
LI Lin, ZHU Denggui, SUN Shumin, et al. Research progress of Prussian blue and its analogues as cathode materials for sodium ion batteries[J]. Journal of Molecular Science, 2023, 39(1): 1-10. | |
11 | 董沛沛, 冯永强, 王潇, 等. 多孔普鲁士蓝类似物的合成及电催化析氧性能[J]. 精细化工, 2021, 38(4): 823-829. |
DONG Peipei, FENG Yongqiang, WANG Xiao, et al. Synthesis of porous Prussian-blue analogues and electrocatalytic properties for oxygen evolution reaction[J]. Fine Chemicals, 2021, 38(4): 823-829. | |
12 | 黎素, 张博, 谢春生, 等. Bi-FeC2O4复合催化剂活化过硫酸盐降解罗丹明B[J]. 环境科学学报, 2021, 41(7): 2796-2805. |
LI Su, ZHANG Bo, XIE Chunsheng, et al. Catalytic degradation of Rhodamine B by Bi-FeC2O4 composite activated persulfate[J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2796-2805. | |
13 | 李英豪, 郑向前, 高晓亚, 等. CoFe2O4的制备及其活化过一硫酸盐降解磺胺甲噁唑[J]. 精细化工, 2022, 39(5): 1020-1027. |
LI Yinghao, ZHENG Xiangqian, GAO Xiaoya, et al. Preparation of CoFe2O4 and its peroxymonosulfate activation for degradation of sulfamethoxazole[J]. Fine Chemicals, 2022, 39(5): 1020-1027. | |
14 | NIU Lijun, ZHANG Guangming, XIAN Guang, et al. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: Performance, activation mechanism and degradation pathway[J]. Separation and Purification Technology, 2021, 259: 118156. |
15 | YANG Youwei, GUO Changsheng, ZENG Yiting, et al. Peroxymonosulfate activation by CuFe-Prussian blue analogues for the degradation of bisphenol S: Effect, mechanism, and pathway[J]. Chemosphere, 2023, 331: 138748. |
16 | LAI Leiduo, YAN Jianfei, LI Jun, et al. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 343: 676-688. |
17 | 王磊, 成先雄, 连军锋, 等. 尖晶石型c-CuFe2O4催化过硫酸盐降解偶氮染料[J]. 精细化工, 2021, 38(10): 2117-2124. |
WANG Lei, CHENG Xianxiong, LIAN Junfeng, et al. Degradation of azo dye by catalyzed persulfate with spinel c-CuFe2O4 [J]. Fine Chemicals, 2021, 38(10): 2117-2124. | |
18 | GHANBARI Farshid, MORADI Mahsa. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. |
19 | 甄建政,聂士松,潘世元, 等.多维度碳基负载金属催化剂活化PMS降解水中污染物的研究进展[J].化工进展,2022,41(4):1858-1872. |
ZHEN Jianzheng, NIE Shisong, PAN Shiyuan, et al. Research progress on advanced activation of peroxymonosulfate by multidimensional carbon-supported metal catalyst for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1858-1872. | |
20 | HUANG Yaohui, HUANG Yi-Fong, HUANG Chuning, et al. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1110-1118. |
21 | 董康妮, 谢更新, 晏铭, 等. 磺化生物炭活化过硫酸盐去除水中盐酸四环素[J]. 中国环境科学, 2022, 42(8): 3650-3657. |
DONG Kangni, XIE Gengxin, YAN Ming, et al. Removal of tetracycline hydrochloride from aqueous solutions by sulfonated biochar-activated persulfate[J]. China Environmental Science, 2022, 42(8): 3650-3657. | |
22 | HAMMOUDA Samia Ben, ZHAO Feiping, SAFAEI Zahra, et al. Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: Influence of co-existing chemicals and UV irradiation[J]. Applied Catalysis B: Environmental, 2018, 233: 99-111. |
23 | LOU Xiaoyi, WU Liuxi, GUO Yaoguang, et al. Peroxymonosulfate activation by phosphate anion for organics degradation in water[J]. Chemosphere, 2014, 117: 582-585. |
24 | ZHANG Tao, ZHU Haibo, Jean-Philippe CROUÉ. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism[J]. Environmental Science & Technology, 2013, 47(6): 2784-2791. |
25 | 朱紫琦, 李立, 徐铭骏, 等. 菱形片状铁锰催化剂活化过硫酸盐降解四环素[J]. 中国环境科学, 2021, 41(11): 5142-5152. |
ZHU Ziqi, LI Li, XU Mingjun, et al. Rhombic sheet iron-manganese catalyst-activating peroxymonosulfate for tetracycline degradation[J]. China Environmental Science, 2021, 41(11): 5142-5152. | |
26 | 徐铭骏, 郭兆春, 李立, 等. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2): 1043-1053. |
XU Mingjun, GUO Zhaochun, LI Li, et al. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1043-1053. | |
27 | LU Hongtao, SUI Minghao, YUAN Bojie, et al. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals[J]. Chemical Engineering Journal, 2019, 357: 140-149. |
28 | XU Haodan, WANG Da, MA Jun, et al. A superior active and stable spinel sulfide for catalytic peroxymonosulfate oxidation of bisphenol S[J]. Applied Catalysis B: Environmental, 2018, 238: 557-567. |
29 | HU Enlai, FENG Yafei, NAI Jianwei, et al. Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting[J]. Energy & Environmental Science, 2018, 11(4): 872-880. |
30 | LI Miaoqing, LUO Rui, WANG Chaohai, et al. Iron-tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation[J]. Chemical Engineering Journal, 2019, 372: 774-784. |
31 | ZHU Shijun, WANG Wei, XU Yongpeng, et al. Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2019, 365: 99-110. |
32 | GUO Ruonan, CHEN Ying, NENGZI Lichao, et al. In situ preparation of carbon-based Cu-Fe oxide nanoparticles from CuFe Prussian blue analogues for the photo-assisted heterogeneous peroxymonosulfate activation process to remove lomefloxacin[J]. Chemical Engineering Journal, 2020, 398: 125556. |
33 | LU Sen, WANG Guanlong, CHEN Shuo, et al. Heterogeneous activation of peroxymonosulfate by LaCo1- x Cu x O3 perovskites for degradation of organic pollutants[J]. Journal of Hazardous Materials, 2018, 353: 401-409. |
34 | 胡明珠. 钴铁双金属催化剂活化过硫酸盐降解有机污染物的性能与机理[D]. 杭州: 浙江大学, 2021. |
HU Mingzhu. Performance and mechanism of cobalt-iron bimetallic catalyst activating persulfate to degrade organic pollutants[D]. Hangzhou: Zhejiang University, 2021. | |
35 | WANG Bingyu, LI Qiaoqiao, LV Ying, et al. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation[J]. Chemical Engineering Journal, 2021, 416: 129162. |
36 | LIU Yang, GUO Hongguang, ZHANG Yongli, et al. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation[J]. Environmental Pollution, 2019, 252: 1042-1050. |
37 | CAI Jing, ZHANG Yan. Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron[J]. Environmental Science and Pollution Research, 2022, 29(6): 8281-8293. |
38 | WEI Junyan, YIN Linning, QU Ruijuan, et al. Experimental and quantum chemical study on the transformation behavior of bisphenol S by radical-driven persulfate oxidation[J]. Environmental Science: Water Research & Technology, 2022, 8(1): 116-126. |
39 | SHAO Penghui, DUAN Xiaoguang, XU Jun, et al. Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S[J]. Journal of Hazardous Materials, 2017, 322: 532-539. |
40 | HUANG Quanlong, CHEN Congjin, ZHAO Xilian, et al. Malachite green degradation by persulfate activation with CuFe2O4@biochar composite: Efficiency, stability and mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105800. |
[1] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[2] | 王蕴青, 杨国锐, 延卫. 过渡金属磷化物的改性方法及其在电化学析氢中的应用[J]. 化工进展, 2023, 42(7): 3532-3549. |
[3] | 殷成阳, 侯铭, 杨爽, 毛迪, 刘俊言. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974. |
[4] | 张国春, 周志辉, 吴红丹. 基于α-Al2O3载体管的新型MXene膜异丙醇脱水性能[J]. 化工进展, 2023, 42(10): 5381-5389. |
[5] | 李亚男, 年佩, 徐楠, 罗海玉, 魏逸彬. 面向精密流体分离的MXene基膜材料研究进展[J]. 化工进展, 2023, 42(10): 5249-5258. |
[6] | 毛梦雷, 孙丹阳, 孟子晖, 刘文芳. 氧化石墨烯和过渡金属碳/氮化合物固定化酶[J]. 化工进展, 2022, 41(4): 1941-1955. |
[7] | 贾艳萍, 薛东奇, 刘启帆, 张海丰, 李正, 张兰河. 亚硫酸盐活化技术及其在废水处理中的应用[J]. 化工进展, 2022, 41(1): 418-426. |
[8] | 田婷婷, 李朝阳, 王召东, 陆慧, 李新冬, 毛艳丽, 宋忠贤, 朱新锋. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488. |
[9] | 黄国勇, 李毅, 屈辰玮, 孙晓华, 李勃天, 戈磊, 叶海木, 张红梅. 热电池用过渡金属二硫化物及其复合材料的研究进展[J]. 化工进展, 2021, 40(4): 2161-2174. |
[10] | 石彩, 史峻铭, 滕敏, 王维聪, 额其马林, 黄占华. 过渡金属磷化物在光催化机理方面的研究进展[J]. 化工进展, 2021, 40(11): 6079-6093. |
[11] | 王春霞, 宋兆毅, 倪基平, 潘宗卫, 黄国勇. 电催化析氢催化剂研究进展[J]. 化工进展, 2021, 40(10): 5523-5534. |
[12] | 朱子翼,董鹏,张举峰,黎永泰,肖杰,曾晓苑,李雪,张英杰. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020, 39(3): 1043-1056. |
[13] | 谷霞, 王若飞, 邵怀启, 姜涛. AlCl3/促进剂协同催化1-癸烯齐聚制备聚α-烯烃合成油[J]. 化工进展, 2020, 39(11): 4497-4502. |
[14] | 高宁,周玉康,沈树宝,陈英文. 含镉化合物在光催化领域应用的研究进展[J]. 化工进展, 2019, 38(12): 5372-5379. |
[15] | 李刚,张穗穗,张妮娜,高婷,兰婷玮,马晓迅. MeMo/USY催化剂对神东煤热解产物的调控[J]. 化工进展, 2019, 38(03): 1329-1337. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1487
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 236
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |