化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1941-1955.DOI: 10.16085/j.issn.1000-6613.2021-0813
收稿日期:
2021-04-18
修回日期:
2021-05-16
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
刘文芳
作者简介:
毛梦雷(1997—),女,硕士研究生,研究方向为固定化酶。E-mail:MAO Menglei(), SUN Danyang, MENG Zihui, LIU Wenfang()
Received:
2021-04-18
Revised:
2021-05-16
Online:
2022-04-23
Published:
2022-04-25
Contact:
LIU Wenfang
摘要:
二维纳米材料具有高机械强度和比表面积、大量表面官能团、良好的亲水性及生物相容性,是固定化酶的良好载体。本文选取经典的氧化石墨烯(GO)以及新型的过渡金属碳/氮化合物(MXenes),分别介绍了它们的制备方法和结构、物理和化学性质,综述了它们在固定化酶领域的应用研究,并进行了比较。文中指出:GO由石墨烯经化学氧化再剥离制得,MXenes由其前体经刻蚀制得,不同的氧化或刻蚀方法制得的材料在组成、结构、性能等方面存在差异。GO表面的可反应官能团更多,包括羟基、羧基和环氧基,故在固定化酶领域应用广泛。MXenes固定化酶则主要利用表面的羟基反应或负电荷吸附,目前主要用于制备生物传感器。最后指出这两种材料还存在制备效率低、纳米片易聚集、循环利用性差等问题。今后的发展方向是要开发更为简单和安全的材料制备方法,探索更为有效的插层和剥离手段以及改善固定化酶的回收策略,进一步推进二维纳米材料在固定化酶领域的应用。
中图分类号:
毛梦雷, 孙丹阳, 孟子晖, 刘文芳. 氧化石墨烯和过渡金属碳/氮化合物固定化酶[J]. 化工进展, 2022, 41(4): 1941-1955.
MAO Menglei, SUN Danyang, MENG Zihui, LIU Wenfang. Enzyme immobilization on graphene oxide and transition metal carbon/nitrogen compounds[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1941-1955.
1 | CHOI J M, HAN S S, KIM H S. Industrial applications of enzyme biocatalysis: current status and future aspects[J]. Biotechnology Advances, 2015, 33(7): 1443-1454. |
2 | 栾鹏仟, 周丹丹, 王晓天, 等. 架起化学-酶催化之间的桥梁:构建策略及催化应用[J]. 化工学报, 2020, 71(12): 5361-5375. |
LUAN Pengqian, ZHOU Dandan, WANG Xiaotian, et al. Bridging gap between chemo- and biocatalysis: strategies and applications[J]. CIESC Journal, 2020, 71(12): 5361-5375. | |
3 | MADHAVAN A, SINDHU R, BINOD P, et al. Strategies for design of improved biocatalysts for industrial applications[J]. Bioresource Technology, 2017, 245: 1304-1313. |
4 | THANGARAJ B, SOLOMON P R. Immobilization of lipases—A review. Part I: Enzyme immobilization[J]. ChemBioEng Reviews, 2019, 6(5): 157-166. |
5 | LIU D M, DONG C. Recent advances in nano-carrier immobilized enzymes and their applications[J]. Process Biochemistry, 2020, 92: 464-475. |
6 | SIRISHA V L, JAIN A, JAIN A. Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes[J]. Advances in Food and Nutrition Research, 2016, 79: 179-211. |
7 | 张弛. 新型载体材料固定化酶的制备、性能和应用研究[D]. 上海: 东华大学, 2015. |
ZHANG Chi. Preparation of novel supports for immobilized enzyme and their properties and application[D]. Shanghai: Donghua University, 2015. | |
8 | 黄磊, 程振民. 无机材料在酶固定化中的应用[J]. 化工进展, 2006, 25(11): 1245-1250. |
HUANG Lei, CHENG Zhenmin. Application of inorganic materials in enzyme immobilization[J]. Chemical Industry and Engineering Progress, 2006, 25(11): 1245-1250. | |
9 | 袁定重, 张秋禹, 侯振宇, 等. 固定化酶载体材料的最新研究进展[J]. 材料导报, 2006, 20(1): 69-72. |
YUAN Dingzhong, ZHANG Qiuyu, HOU Zhenyu, et al. The latest research advance of immobilized enzyme’carriers[J]. Materials Review, 2006, 20(1): 69-72. | |
10 | 牛亚楠, 侯红萍. 固定化酶载体的研究进展[J]. 酿酒科技, 2011(9): 97-99. |
NIU Yanan, HOU Hongping. Research progress in carriers of immobilized enzymes[J]. Liquor-Making Science & Technology, 2011(9): 97-99. | |
11 | 张立倩. 聚羧基甜菜碱接枝载体的制备及其固定化酶的研究[D]. 天津: 天津大学, 2018. |
ZHANG Liqian. Preparation of poly(carboxybetaine methacrylate)-grafted carriers for enzyme immobilizations[D]. Tianjin: Tianjin University, 2018. | |
12 | 隋颖. 无机载体固定化脂肪酶及其催化制备生物柴油性能[D]. 济南: 济南大学, 2012. |
SUI Ying. Immobilization of lipase by inorganic carrier and its application in the production of biodiesel[D]. Jinan: University of Jinan, 2012. | |
13 | 余冲, 孙秀丽, 王东旭, 等. 酶固定化载体及固定化方法最新研究进展[J]. 广东化工, 2021, 48(2): 60-62, 78. |
YU Chong, SUN Xiuli, WANG Dongxu, et al. The latest research progress of enzyme immobilization carrier and immobilization method[J]. Guangdong Chemical Industry, 2021, 48(2): 60-62, 78. | |
14 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
15 | CHIMENE D, ALGE D L, GAHARWAR A K. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects[J]. Advanced Materials, 2015, 27(45): 7261-7284. |
16 | LIU B, ZHOU K. Recent progress on graphene-analogous 2D nanomaterials: properties, modeling and applications[J]. Progress in Materials Science, 2019, 100: 99-169. |
17 | TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. |
18 | YANG F, SONG P, RUAN M B, et al. Recent progress in two-dimensional nanomaterials: synthesis, engineering, and applications[J]. FlatChem, 2019, 18: 100133. |
19 | 樊江, 汪唯, 蔡佳浩, 等. 二维膜的精密构筑和结构调控策略综述[J]. 化工进展, 2020, 39(12): 4823-4836. |
FAN Jiang, WANG Wei, CAI Jiahao, et al. A review of structural design and tuning methods of two-dimensional membranes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4823-4836. | |
20 | LAZANAS A C, PRODROMIDIS M I. Two-dimensional inorganic nanosheets: production and utility in the development of novel electrochemical (bio)sensors and gas-sensing applications[J]. Microchimica Acta, 2021, 188(1): 1-34. |
21 | NGUYEN E P, DE CARVALHO CASTRO SILVA C, MERKOÇI A. Recent advancement in biomedical applications on the surface of two-dimensional materials: from biosensing to tissue engineering[J]. Nanoscale, 2020, 12(37): 19043-19067. |
22 | SHEN J H, ZHU Y H, JIANG H, et al. 2D nanosheets-based novel architectures: synthesis, assembly and applications[J]. Nano Today, 2016, 11(4): 483-520. |
23 | ZHANG J L, ZHANG F, YANG H J, et al. Graphene oxide as a matrix for enzyme immobilization[J]. Langmuir, 2010, 26(9): 6083-6085. |
24 | RAMAKRISHNA T R B, NALDER T D, YANG W R, et al. Controlling enzyme function through immobilisation on graphene, graphene derivatives and other two dimensional nanomaterials[J]. Journal of Materials Chemistry B, 2018, 6(20): 3200-3218. |
25 | XU B, GOGOTSI Y. MXenes: from discovery to applications[J]. Advanced Functional Materials, 2020, 30(47): 2007011. |
26 | WYATT B C, ROSENKRANZ A, ANASORI B. 2D MXenes: tunable mechanical and tribological properties[J]. Advanced Materials, 2021, 33(17): 2007973. |
27 | CHOUHAN A, MUNGSE H P, KHATRI O P. Surface chemistry of graphene and graphene oxide: a versatile route for their dispersion and tribological applications[J]. Advances in Colloid and Interface Science, 2020, 283: 102215. |
28 | JANKOVSKÝ O, MARVAN P, NOVÁČEK M, et al. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties[J]. Applied Materials Today, 2016, 4: 45-53. |
29 | TALYZIN A V, MERCIER G, KLECHIKOV A, et al. Brodie vs Hummers graphite oxides for preparation of multi-layered materials[J]. Carbon, 2017, 115: 430-440. |
30 | ERICKSON K, ERNI R, LEE Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472. |
31 | DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. |
32 | ADEEL M, BILAL M, RASHEED T, et al. Graphene and graphene oxide: functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective[J]. International Journal of Biological Macromolecules, 2018, 120: 1430-1440. |
33 | ALI M, RIAZ R, ANJUM A S, et al. Graphene quantum dots induced porous orientation of holey graphene nanosheets for improved electrocatalytic activity[J]. Carbon, 2021, 171: 493-506. |
34 | SUN X M, LU H, LIU P, et al. A reduced graphene oxide-NiO composite electrode with a high and stable capacitance[J]. Sustainable Energy & Fuels, 2018, 2(3): 673-678. |
35 | LE FEVRE L W, CAO J Y, KINLOCH I A, et al. Systematic comparison of graphene materials for supercapacitor electrodes[J]. Chemistry Open, 2019, 8(4): 418-428. |
36 | MEI Q S, LIU B H, HAN G M, et al. Graphene oxide: from tunable structures to diverse luminescence behaviors[J]. Advanced Science, 2019, 6(14): 1900855. |
37 | BANSAL S A, SINGH A P, KUMAR A, et al. Improved mechanical performance of bisphenol-A graphene-oxide nano-composites[J]. Journal of Composite Materials, 2018, 52(16): 2179-2188. |
38 | GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519. |
39 | ZHAO H, DING R H, ZHAO X, et al. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering[J]. Drug Discovery Today, 2017, 22(9): 1302-1317. |
40 | KIM F, COTE L J, HUANG J X. Graphene oxide: surface activity and two-dimensional assembly[J]. Advanced Materials, 2010, 22(17): 1954-1958. |
41 | LONKAR S P, DESHMUKH Y S, ABDALA A A. Recent advances in chemical modifications of graphene[J]. Nano Research, 2015, 8(4): 1039-1074. |
42 | HE Q G, LIU J, LIU X P, et al. A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites[J]. Electrochimica Acta, 2019, 296: 683-692. |
43 | ARIAEENEJAD S, MOTAMEDI E, HOSSEINI SALEKDEH G. Application of the immobilized enzyme on magnetic graphene oxide nano-carrier as a versatile bi-functional tool for efficient removal of dye from water[J]. Bioresource Technology, 2021, 319: 124228. |
44 | KASHEFI S, BORGHEI S M, MAHMOODI N M. Covalently immobilized laccase onto graphene oxide nanosheets: preparation, characterization, and biodegradation of azo dyes in colored wastewater[J]. Journal of Molecular Liquids, 2019, 276: 153-162. |
45 | 王艳娥, 张子安, 唐爱星, 等. 表面活性剂改性磁性氧化石墨烯共价固定脂肪酶CRL[J]. 化工进展, 2019, 38(9): 4255-4263. |
WANG Yan’e, ZHANG Zi’an, TANG Aixing, et al. Surfactant modified magnetic graphene oxide covalent immobilized Candida rugose lipase[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4255-4263. | |
46 | XIE W L, HUANG M Y. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production[J]. Energy Conversion and Management, 2018, 159: 42-53. |
47 | 朱珣之, 李强, 华楠, 等. 磁性氧化石墨烯固定化果胶酶[J]. 化工进展, 2014, 33(12): 3324-3328. |
ZHU Xunzhi, LI Qiang, HUA Nan, et al. Immobilisation of pectinase on magnetic graphene oxide[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3324-3328. | |
48 | MONAJATI M, BORANDEH S, HESAMI A, et al. Immobilization of L-asparaginase on aspartic acid functionalized graphene oxide nanosheet: enzyme kinetics and stability studies[J]. Chemical Engineering Journal, 2018, 354: 1153-1163. |
49 | BESHARATI VINEH M, SABOURY A A, POOSTCHI A A, et al. Physical adsorption of horseradish peroxidase on reduced graphene oxide nanosheets functionalized by amine: a good system for biodegradation of high phenol concentration in wastewater[J]. International Journal of Environmental Research, 2018, 12(1): 45-57. |
50 | MATHESH M, LUAN B Q, AKANBI T O, et al. Opening lids: modulation of lipase immobilization by graphene oxides[J]. ACS Catalysis, 2016, 6(7): 4760-4768. |
51 | CHEN Y Z, LUO Z G, LU X X. Construction of novel enzyme-graphene oxide catalytic interface with improved enzymatic performance and its assembly mechanism[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11349-11359. |
52 | SEELAJAROEN H, BAKANDRITSOS A, OTYEPKA M, et al. Immobilized enzymes on graphene as nanobiocatalyst[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 250-259. |
53 | GONG A, ZHU C T, XU Y, et al. Moving and unsinkable graphene sheets immobilized enzyme for microfluidic biocatalysis[J]. Scientific Reports, 2017, 7: 4309. |
54 | LIU J, SHEN X, BAIMANOV D, et al. Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2647-2654. |
55 | NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. |
56 | 李能, 史祖皓, 陈星竹, 等. 插层限域工程制备MXene及其复合材料的研究进展[J]. 武汉工程大学学报, 2019, 41(1): 46-54. |
LI Neng, SHI Zuhao, CHEN Xingzhu, et al. Advance progress in synthesis of MXene and MXene-based composites by intercalation confinement engineering[J]. Journal of Wuhan Institute of Technology, 2019, 41(1): 46-54. | |
57 | 王冰心, 周爱国, 刘凡凡, 等. 二维晶体MXene在气体吸附/转化领域的应用[J]. 人工晶体学报, 2018, 47(2): 374-381. |
WANG Bingxin, ZHOU Aiguo, LIU Fanfan, et al. Gas adsorption/conversion of two-dimensional carbide MXene[J]. Journal of Synthetic Crystals, 2018, 47(2): 374-381. | |
58 | ZHU J, HA E N, ZHAO G L, et al. Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption[J]. Coordination Chemistry Reviews, 2017, 352: 306-327. |
59 | KHAZAEI M, MISHRA A, VENKATARAMANAN N S, et al. Recent advances in MXenes: from fundamentals to applications[J]. Current Opinion in Solid State and Materials Science, 2019, 23(3): 164-178. |
60 | JIANG X T, KUKLIN A V, BAEV A, et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications[J]. Physics Reports, 2020, 848: 1-58. |
61 | 董旭晟, 赵瑞正, 孙彬, 等. MXenes的表面改性及其在碱金属离子电池中应用的研究进展[J]. 功能材料, 2020, 51(9): 9031-9044. |
DONG Xusheng, ZHAO Ruizheng, SUN Bin, et al. Research progresses on surface modifications and applications of MXenes-based nanocomposites in alkali metal ion batteries[J]. Journal of Functional Materials, 2020, 51(9): 9031-9044. | |
62 | 容誉, 曾宪哲, 相明雪, 等. MXenes材料的制备、应用及其机理综述[J]. 硅酸盐通报, 2019, 38(12): 3855-3860, 3867. |
RONG Yu, ZENG Xianzhe, XIANG Mingxue, et al. Review on the preparation, application and mechanism of MXenes materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3855-3860, 3867. | |
63 | FENG A H, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2 [J]. Materials & Design, 2017, 114: 161-166. |
64 | YANG S, ZHANG P P, WANG F X, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie International Edition, 2018, 57(47): 15491-15495. |
65 | 郑会奇, 陈晋, 李延军. 二维晶体MXene的制备及催化领域的应用研究进展[J]. 硅酸盐通报, 2018, 37(6): 1908-1913. |
ZHENG Huiqi, CHEN Jin, LI Yanjun. Research on preparation and photocatalytic application of two-dimensional crystal MXene[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6): 1908-1913. | |
66 | URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391. |
67 | ROZMYSŁOWSKA-WOJCIECHOWSKA A, WOJCIECHOWSKI T, ZIEMKOWSKA W, et al. Surface interactions between 2D Ti3C2/Ti2C MXenes and lysozyme[J]. Applied Surface Science, 2019, 473: 409-418. |
68 | LAIPAN M W, XIANG L C, YU J F, et al. Layered intercalation compounds: mechanisms, new methodologies, and advanced applications[J]. Progress in Materials Science, 2020, 109: 100631. |
69 | LI S, SHI Q, LI Y, et al. Intercalation of metal ions into Ti3C2T x MXene electrodes for high-areal-capacitance microsupercapacitors with neutral multivalent electrolytes[J]. Advanced Functional Materials, 2020, 30(40): 2003721. |
70 | MUCKLEY E S, NAGUIB M, WANG H W, et al. Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water[J]. ACS Nano, 2017, 11(11): 11118-11126. |
71 | LYU G, WANG J, SHI Z Q, et al. Intercalation and delamination of two-dimensional MXene (Ti3C2T x ) and application in sodium-ion batteries[J]. Materials Letters, 2018, 219: 45-50. |
72 | LU M, ZHANG Y P, CHEN J N, et al. K+ alkalization promoted Ca2+ intercalation in V2CT x MXene for enhanced Li storage[J]. Journal of Energy Chemistry, 2020, 49: 358-364. |
73 | LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences, 2014, 111(47): 16676-16681. |
74 | BOOTA M, ANASORI B, VOIGT C, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene)[J]. Advanced Materials, 2016, 28(7): 1517-1522. |
75 | YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30): 1701264. |
76 | SU T, HOOD Z D, NAGUIB M, et al. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. Nanoscale, 2019, 11(17): 8138-8149. |
77 | LI H, CHEN R, ALI M, et al. In situ grown MWCNTs/MXenes nanocomposites on carbon cloth for high-performance flexible supercapacitors[J]. Advanced Functional Materials, 2020, 30(47): 2002739. |
78 | ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2): 339-345. |
79 | GUO X, XIE X Q, CHOI S, et al. Sb2O3/MXene(Ti3C2T x ) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(24): 12445-12452. |
80 | DENG R X, CHEN B B, LI H G, et al. MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption[J]. Applied Surface Science, 2019, 488: 921-930. |
81 | DING J F, TANG C, ZHU G J, et al. Ultrasmall SnO2 nanocrystals sandwiched into polypyrrole and Ti3C2T x MXene for highly effective sodium storage[J]. Materials Chemistry Frontiers, 2021, 5(2): 825-833. |
82 | RAN J R, GAO G P, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nature Communications, 2017, 8: 13907. |
83 | ZHENG M, GUO R S, LIU Z C, et al. MoS2 intercalated p- Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 735: 1262-1270. |
84 | WU Y T, NIE P, JIANG J M, et al. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries[J]. ChemElectroChem, 2017, 4(6): 1560-1565. |
85 | BALCı E, AKKUŞ Ü Ö, BERBER S. Controlling topological electronic structure of multifunctional MXene layer[J]. Applied Physics Letters, 2018, 113(8): 083107. |
86 | LIU Y, XIAO H, GODDARD W A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes[J]. Journal of the American Chemical Society, 2016, 138(49): 15853-15856. |
87 | LIN H, CHEN Y, SHI J L. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead[J]. Advanced Science, 2018, 5(10): 1800518. |
88 | LAI S, JEON J, JANG S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CT x, T: —OH, —F and —O)[J]. Nanoscale, 2015, 7(46): 19390-19396. |
89 | RONCHI R M, ARANTES J T, SANTOS S F. Synthesis, structure, properties and applications of MXenes: current status and perspectives[J]. Ceramics International, 2019, 45(15): 18167-18188. |
90 | DING C Y, LIANG J M, ZHOU Z, et al. Photothermal enhanced enzymatic activity of lipase covalently immobilized on functionalized Ti3C2T x nanosheets[J]. Chemical Engineering Journal, 2019, 378: 122205. |
91 | MA B K, LI M, LING-ZHI C, et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2 [J]. Journal of Inorganic Materials, 2019: 18. |
92 | ZHOU L Y, ZHANG X N, MA L, et al. Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection[J]. Biochemical Engineering Journal, 2017, 128: 243-249. |
93 | WU L X, LU X B, DHANJAI, et al. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol[J]. Biosensors and Bioelectronics, 2018, 107: 69-75. |
94 | GU H, XING Y D, XIONG P, et al. Three-dimensional porous Ti3C2T x MXene-graphene hybrid films for glucose biosensing[J]. ACS Applied Nano Materials, 2019, 2(10): 6537-6545. |
[1] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[2] | 张浩月, 李春丽, 徐博, 李筱贺, 仝铃, 邱广明. 分段取样法研究改进Hummers法制备GO结构特性及其机理[J]. 化工进展, 2023, 42(5): 2606-2615. |
[3] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[4] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[5] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[6] | 熊剑, 夏柳芬, 虞雷, 费安杰, 徐楚, 陈盛亚, 江国栋. 氧化石墨烯复合TiO2-B薄膜的制备及其电致变色性能[J]. 化工进展, 2022, 41(7): 3794-3800. |
[7] | 陈勇, 程宁, 杨育兵, 卢凯玲, 罗应, 易慧. 氧化石墨烯插层膨润土复合材料高效吸附碱性紫3染料[J]. 化工进展, 2022, 41(6): 3324-3332. |
[8] | 杨洪海, 张苗, 刘利伟, 周屹, 沈俊杰, 施伟刚, 尹勇. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725-1734. |
[9] | 孟子豪, 李青云, 刘幽燕, 林东亮, 唐爱星. 单相体系中MOF固定化脂肪酶催化柠檬烯环氧化[J]. 化工进展, 2022, 41(12): 6540-6548. |
[10] | 郑安达, 杨成功, 王冬娥, 田志坚. 水热合成rGO负载的MoS2催化剂及其催化蒽加氢性能[J]. 化工进展, 2022, 41(1): 244-252. |
[11] | 杨晓芳, 魏铭, 孙力. 聚丙烯酰胺/碳量子点/氧化石墨烯复合水凝胶制备及其性能分析[J]. 化工进展, 2021, 40(S2): 301-308. |
[12] | 胡慧敏, 方小峰, 娄蒙蒙, 刘帅, 徐晨烨, 李方. 氧化石墨烯分离膜的性能调控及其传质机理研究进展[J]. 化工进展, 2021, 40(S1): 291-300. |
[13] | 李胄彦, 戴若彬, 李洋, 王雪野, 王志伟. 基于二维纳米材料的水处理功能膜研究进展[J]. 化工进展, 2021, 40(8): 4117-4126. |
[14] | 马骏, 孙冬, 张明爽, 张兰河, 陈子成. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8): 4456-4462. |
[15] | 顾丽敏, 薛伟. 氧化石墨烯改性水性半合成液压支架用浓缩液的制备与性能[J]. 化工进展, 2021, 40(3): 1611-1618. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |