化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1956-1969.DOI: 10.16085/j.issn.1000-6613.2021-0828
付涵勋1(), 兰宇昊1, 凌子夜1,2(), 张正国1,2
收稿日期:
2021-04-19
修回日期:
2021-05-27
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
凌子夜
作者简介:
付涵勋(1999—),男,学士,研究方向为能源化工。E-mail:基金资助:
FU Hanxun1(), LAN Yuhao1, LING Ziye1,2(), ZHANG Zhengguo1,2
Received:
2021-04-19
Revised:
2021-05-27
Online:
2022-04-23
Published:
2022-04-25
Contact:
LING Ziye
摘要:
七水硫酸镁是一种具有高储热密度(2.8GJ/m3)、低工作温度(<150℃)的无机盐水合物化学储热材料。开发基于七水硫酸镁的高效热化学储热材料和储热系统,有望在太阳能热利用、工业余热回收、季节性储能、建筑供热等领域取得良好的节能减排应用效果。本文对七水硫酸镁的储热原理、基本物性进行了详细介绍。针对七水硫酸镁在实际应用过程中存在传质阻力大、使用寿命受限、传热性能不足等缺点,文章综述了通过沸石、高分子泡沫、碳材料等改性制备硫酸镁高性能复合材料及储热器的相关研究,并对此材料的未来发展趋势作出评价。
中图分类号:
付涵勋, 兰宇昊, 凌子夜, 张正国. 七水硫酸镁化学储热材料与应用研究进展[J]. 化工进展, 2022, 41(4): 1956-1969.
FU Hanxun, LAN Yuhao, LING Ziye, ZHANG Zhengguo. Review on development of magnesium sulfate heptahydrate for thermochemical storage and application[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1956-1969.
1 | KANT K, SHUKLA A, SHARMA A. Advancement in phase change materials for thermal energy storage applications[J]. Solar Energy Materials and Solar Cells, 2017, 172: 82-92. |
2 | 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12): 5066-5085. |
LI Zhao, LI Baorang, CHEN Haozhi, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085. | |
3 | 冷光辉, 蓝志鹏, 葛志伟, 等. 储热材料研究进展[J]. 储能科学与技术, 2015, 4(2): 119-130. |
LENG G H, LAN Z P, GE Z W, et al. Recent progress in thermal energy storage materials[J]. Energy Storage Science and Technology, 2015, 4(2): 119-130. | |
4 | LI G. Sensible heat thermal storage energy and exergy performance evaluations[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 897-923. |
5 | CHANDEL S S, AGARWAL T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 581-596. |
6 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. |
7 | 李春鸿. 蓄热材料与化学反应[J]. 化学通报, 1983, 46(3): 31-35. |
LI C H. Thermal storage materials and chemical reactions[J]. Chemistry Bulletin, 1983, 46(3): 31-35. | |
8 | ZHANG H, ZHANG L, LI Q, et al. Preparation and characterization of methyl palmitate/palygorskite composite phase change material for thermal energy storage in buildings[J]. Construction and Building Materials, 2019, 226: 212-219. |
9 | MARANI A, NEHDI M L. Integrating phase change materials in construction materials: critical review[J]. Construction and Building Materials, 2019, 217: 36-49. |
10 | 周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383. |
ZHOU SiLi, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383. | |
11 | RAMAKRISHNAN S, WANG X, SANJAYAN J, et al. Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events[J]. Applied Energy, 2017, 194: 410-421. |
12 | HARRIES D N, PASKEVICIUS M, SHEPPARD D A, et al. Concentrating solar thermal heat storage using metal hydrides[J]. Proceedings of the IEEE, 2012, 100(2): 539-549. |
13 | OUSALEH H A, SAIR S, ZAKI A, et al. Double hydrates salt as sustainable thermochemical energy storage materials: evaluation of dehydration behavior and structural phase transition reversibility[J]. Solar Energy, 2020, 201: 846-856. |
14 | 杨岳澔, 程晓敏, 李丹, 等. 硬脂酸/改性碳纳米管复合相变储热材料性能[J]. 储能科学与技术, 2019, 8(4): 759-763. |
YANG Y H, CHENG X M, LI D, et al. Properties of stearic acid/modified carbon nanotube composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(4): 759-763. | |
15 | 赵耀. 相变材料及梯级系统传热储热特性的理论与实验研究[D]. 上海: 上海交通大学, 2018. |
ZHAO Y. Theoretical and experimental study on the heat transfer and storage characteristics of phase change materials and cascaded systems[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
16 | 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772, 2330. |
LI W, WANG Q W, ZENG M, et al. Performance test and numerical study of salt hydrate-based thermochemical heat storage materials at middle-low temperature[J]. CIESC Journal, 2021, 72(5): 2763-2772, 2330. | |
17 | 徐凯迪, 谢涛, 王升, 等. 太阳能甲烷干重整复杂反应体系的热化学储能特性[J]. 化工进展, 2019, 38(11): 4921-4929. |
XU K D, XIE T, WANG S, et al. Thermochemical energy storage characteristics of complex reaction system for solar methane dry reforming system[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4921-4929. | |
18 | KALLENBERGER P A, BRIELER F J, POSERN K, et al. Magnesium sulfate/polymer composites for seasonal, thermochemical energy storage[J]. Chemie Ingenieur Technik, 2016, 88(3): 384-397. |
19 | SAKAMOTO Y, YAMAMOTO H. Measurement of thermophysical property of energy storage system (CaCl2&NH3 System)[J]. Natural Resources, 2014, 5(12): 687-697. |
20 | 闫霆, 王如竹, 李廷贤. 热化学复合吸附储热循环的理论及实验[J]. 化工学报, 2016, 67(S2): 311-317. |
YAN T, WANG R Z, LI Y X, et al. Theoretical analysis and experiment of thermochemical composite sorption heat storage cycle[J]. CIESC Journal, 2016, 67(S2): 311-317. | |
21 | TRAUSEL F, JONG A J D, CUYPERS R. A review on the properties of salt hydrates for thermochemical storage[J]. Energy Procedia, 2014, 48: 447-452. |
22 | 路丽婷. 七水硫酸镁/十水硫酸钠复合相变储热复合材料的性能分析[D]. 西安: 西北大学, 2018. |
LU L T. Performance analysis of composite phase change heat storage composite material of sodium heptahydrate/sodium sulfate[D]. Xi’an: Northwest University, 2018. | |
23 | CLARK R J, MEHRABADI A, FARID M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J]. Journal of Energy Storage, 2020, 27:101145. |
24 | PRIETO C, COOPER P, FERNÁNDEZ A I, et al. Review of technology: thermochemical energy storage for concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 72-84. |
25 | 吴礼定, 曾波. 钾肥副产镁资源制备氢氧化镁的生产技术[J]. 盐业与化工, 2012, 41(6): 26-30. |
WU L D, ZENG B. Technology of Mg(OH)2 preparation using magnesium resource from the byproduct of potassium fertilizer production[J]. Journal of Salt and Chemical Industry, 2012, 41(6): 26-30. | |
26 | 侯殿保, 杨海云, 陈育刚, 等. 硫酸盐型盐湖盐田泻利盐矿硫酸镁浸取结晶工艺条件研究[J]. 盐湖研究, 2020, 28(2): 71-78. |
HOU D B, YANG H Y, CHEN Y G, et al. Study on the leaching and crystallization conditions of magnesium sulfate leaching from EPS mine of sulfate salt lake.[J]. Journal of Salt Lake Research,2020, 28(2): 71-78. | |
27 | 郑绵平, 侯献华. 青海盐湖资源综合利用与可持续发展战略[J]. 科技导报, 2017, 35 (12): 11-13. |
ZHENG M P, HOU X H. Comprehensive utilization and sustainable development strategy of Qinghai salt lake resources[J]. Science&Technology Review, 2017, 35 (12): 11-13. | |
28 | 李龙. 青海盐湖镁资源利用概述[J]. 广东化工, 2011, 38(9): 85-86. |
LI L. Magnesium resources and utilization of Qinghai salt lake[J]. Guangdong Chemical Industry, 2011, 38(9): 85-86. | |
29 | ESSEN V M VAN, ZONDAG H A, GORES J C, et al. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041014. |
30 | SCAPINO L, ZONDAG H A, BAEL J V, et al. Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948. |
31 | HONGOIS S, KUZNIK F, STEVENS P, et al. Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1831-1837. |
32 | DONKERS P A J, BECKERT S, PEL L, et al. Water transport in MgSO4·7H2O during dehydration in view of thermal storage[J]. The Journal of Physical Chemistry C, 2015, 119(52): 28711-28720. |
33 | OKHRIMENKO L, FAVERGEON L, JOHANNES K, et al. Thermodynamic study of MgSO4·H2O system dehydration at low pressure in view of heat storage[J]. Thermochimica Acta, 2017, 656: 135-143. |
34 | MÜLLER D, KNOLL C, GRAVOGL G, et al. Medium-temperature thermochemical energy storage with transition metal ammoniates: a systematic material comparison[J]. Applied Energy, 2021, 285: 116470. |
35 | POSERN K, OSBURG A. Determination of the heat storage performance of thermochemical heat storage materials based on SrCl2 and MgSO4 [J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 2769-2773. |
36 | GULATI S, TABASSUM Z, SCHWINGENSCHLOGL U, et al. Molecular dynamics simulation of dehydration of salt hydrates (MgSO4·7H2O and ZnSO4·7H2O)[J]. Materials Today: Proceedings, 2020, 28: 1013-1017. |
37 | AL-ABBASI O, ABDELKEFI A, GHOMMEM M. Modeling and assessment of a thermochemical energy storage using salt hydrates[J]. International Journal of Energy Research, 2017, 41(14): 2149-2161. |
38 | VOORT I M V D. Characterization of a thermochemical storage material[D]. Eindhoven: Eindhoven University of Technology, 2007. |
39 | FERCHAUD C C. Experimental study of salt hydrates for thermochemical seasonal heat storage[D]. Eindhoven: Eindhoven University of Technology, 2016. |
40 | HAMEER S, NIEKERK J L V. A review of large-scale electrical energy storage[J]. International Journal of Energy Research, 2015, 39(9): 1179-1195. |
41 | KYRIAKOPOULOS G L, ARABATZIS G. Electrical energy storage systems in electricity generation: energy policies, innovative technologies, and regulatory regimes[J]. Renewable & Sustainable Energy Reviews, 2016, 56: 1044-1067. |
42 | KHARBANDA J S, YADAV S K, SONI V, et al. Modeling of heat transfer and fluid flow in epsom salt (MgSO4·7H2O) dissociation for thermochemical energy storage[J]. Journal of Energy Storage, 2020, 31: 101712. |
43 | BALASUBRAMANIAN G, GHOMMEM M, HAJJ M R, et al. Modeling of thermochemical energy storage by salt hydrates[J]. International Journal of Heat and Mass Transfer, 2010, 53(25): 5700-5706. |
44 | N'TSOUKPOE K E, HUI L, NOLWENN L P, et al. A review on long-term sorption solar energy storage[J]. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2385-2396. |
45 | POSERN K, LINNOW K, NIERMANN M, et al. Thermochemical investigation of the water uptake behavior of MgSO4 hydrates in host materials with different pore size[J]. Thermochimica Acta, 2015, 611: 562-571. |
46 | CASEY S, ELVINS J, RIFFAT S, et al. Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage—Selection, synthesis and characterisation of candidate materials[J]. Energy and Buildings, 2014, 84: 412-425. |
47 | DONKERS P A J, PEL L, ADAN O C G. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2016, 5: 25-32. |
48 | CORTÉS F B, CHEJNE F, CARRASCO-MARÍN F, et al. Water sorption on silica and zeolite-supported hygroscopic salts for cooling system applications[J]. Energy Conversion and Management, 2012, 53(1): 219-223. |
49 | CHENG W P, GAO W, CUI X, et al. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 192-198. |
50 | HAUER A. Adsorption systems for TES-design and demonstration projects[M]. Springer Netherlands: Thermal Energy Storage for Sustainable Energy Consumption, 2007. |
51 | 谢云云. 基于水合盐复合材料的热化学储热性能实验和数值研究[D]. 北京: 华北电力大学, 2018. |
XIE Y Y. Experiment and numerical study on the thermochemical heat storage based on hydrate composite materials[D]. Beijing: North China Electric Power University,2018. | |
52 | WHITING G, GRONDIN D, BENNICI S, et al. Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2013, 112: 112-119. |
53 | PALOMBA V, FRAZZICA A. Recent advancements in sorption technology for solar thermal energy storage applications[J]. Solar Energy, 2019, 192: 69-105. |
54 | WANG Q, XIE Y, DING B, et al. Structure and hydration state characterizations of MgSO4-zeolite 13X composite materials for long-term thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110047. |
55 | LINNOW K, NIERMANN M, BONATZ D, et al. Experimental studies of the mechanism and kinetics of hydration reactions[J]. Energy Procedia, 2014, 48: 394-404. |
56 | RISTIĆ A, HENNINGER S K. Sorption composite materials for solar thermal energy storage[J]. Energy Procedia, 2014, 48: 977-981. |
57 | COURBON E, D’ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: enhancement of energy storage density and stability over cycles for solar heat storagecoupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. |
58 | ZHU D, WU H, WANG S. Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage[J]. International Journal of Thermal Sciences, 2005, 45(8): 804-813. |
59 | MROWIEC-BIAŁOŃET J, JARZȨBSKI A B, LACHOWSKI A I, et al. Effective inorganic hybrid adsorbents of water vapor by the sol-gel method[J]. Chem. Mater., 1997, 9(11): 2486-2490. |
60 | JABBARI-HICHRI A, BENNICI S, AUROUX A. CaCl2-containing composites as thermochemical heat storage materials[J]. Solar Energy Materials & Solar Cells, 2017, 172: 177-185. |
61 | LIU H, NAGANO K, TOGAWA J. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J]. Solar Energy, 2015, 111: 186-200. |
62 | BRANCATO V, CALABRESE L, PALOMBA V, et al. MgSO4·7H2O filled macro cellular foams: an innovative composite sorbent for thermo-chemical energy storage applications for solar buildings[J]. Solar Energy, 2018, 173: 1278-1286. |
63 | CALABRESE L, BRANCATO V, PALOMBA V, et al. Assessment of the hydration/dehydration behaviour of MgSO4·7H2O filled cellular foams for sorption storage applications through morphological and thermo-gravimetric analyses[J]. Sustainable Materials and Technologies, 2018, 17: 00073. |
64 | CALABRESE L, BRANCATO V, PALOMBA V, et al. Magnesium sulphate-silicone foam composites for thermochemical energy storage: assessment of dehydration behaviour and mechanical stability[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109992. |
65 | LELE A F, N'TSOUKPOE K E, OSTERLAND T, et al. Thermal conductivity measurement of thermochemical storage materials[J]. Applied Thermal Engineering, 2015, 89: 916-926. |
66 | KLEINER F, POSERN K, OSBURG A. Thermal conductivity of selected salt hydrates for thermochemical solar heat storage applications measured by the light flash method[J]. Applied Thermal Engineering, 2017, 113: 1189-1193. |
67 | SHERE L, TRIVEDI S, ROBERTS S, et al. Synthesis and characterization of thermochemical storage material combining porous zeolite and inorganic salts[J]. Heat Transfer Engineering, 2019, 40(13/14): 1176-1181. |
68 | XU S J, TEH L, WANG R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171:98-109. |
69 | XU C, YU Z, XIE Y, et al. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J]. Applied Thermal Engineering, 2018, 129: 250-259. |
70 | XU S Z, WANG R Z, WANG L W, et al. Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J]. Energy, 2019, 167: 889-901. |
71 | MAHON D, HENSHALL P, CLAUDIO G, et al. Feasibility study of MgSO4+zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage[J]. Renewable Energy, 2020, 145: 1799-1807. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[6] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[7] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[8] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[9] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[10] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[11] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[12] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[13] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[14] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[15] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |