化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1925-1940.DOI: 10.16085/j.issn.1000-6613.2021-0908
收稿日期:
2021-04-27
修回日期:
2021-06-12
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
郝远强,刘又年
作者简介:
唐子龙(1967—),男,博士,教授,研究方向为药物分子的设计与合成。E-mail:基金资助:
TANG Zilong1,2(), HAO Yuanqiang1(), LIU Younian2()
Received:
2021-04-27
Revised:
2021-06-12
Online:
2022-04-23
Published:
2022-04-25
Contact:
HAO Yuanqiang,LIU Younian
摘要:
自2014年首次被报道以来,层状黑磷作为一种新型的二维纳米材料受到了广泛的关注与研究。层状黑磷具有比表面积大、带隙结构可调、载流子迁移率高、生物相容性好及易修饰等特点,是一类潜在的理想生物传感材料。本文将关注层状黑磷在电化学传感器中的应用,根据检测目标物的类型,对最新的研究报道进行了详细分类与讨论,主要包括气体分子、生物小分子、其他小分子、生物大分子、细胞几大类基于层状黑磷构筑的电化学传感器。重点概述了层状黑磷及其复合纳米材料的制备方法与性质,传感器的结构、工作原理与分析性能等。最后讨论了黑磷基纳米材料在电化学传感器中应用的现存问题和未来发展方向,为进一步拓展黑磷纳米材料在分析传感领域的应用提供了参考。
中图分类号:
唐子龙, 郝远强, 刘又年. 基于薄层黑磷的电化学传感器研究进展[J]. 化工进展, 2022, 41(4): 1925-1940.
TANG Zilong, HAO Yuanqiang, LIU Younian. Recent progress of electrochemical sensors based on layered black phosphorus[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1925-1940.
1 | RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777. |
2 | TAN C L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. |
3 | FIORI G, BONACCORSO F, IANNACCONE G, et al. Electronics based on two-dimensional materials[J]. Nature Nanotechnology, 2014, 9(10): 768-779. |
4 | BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. |
5 | 翟倩楠, 冯树波. 氧化石墨烯的制备、结构控制与应用[J]. 化工进展, 2020, 39(10): 4061-4072. |
ZHAI Qiannan, FENG Shubo. Preparation, structure control and application of graphene oxide[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4061-4072. | |
6 | BRIDGMAN P W. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 1914, 36(7): 1344-1363. |
7 | LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. |
8 | LING X, WANG H, HUANG S X, et al. The renaissance of black phosphorus[J]. Proceedings of the National Academy of Sciences, 2015, 112(15): 4523-4530. |
9 | BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352. |
10 | XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5: 4458. |
11 | LONG M S, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2019, 29: 1803807. |
12 | LIU Y J, BHATTARAI P, DAI Z F, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chemical Society Reviews, 2019, 48(7): 2053-2108. |
13 | YUAN H T, LIU X G, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10(8): 707-713. |
14 | KIM J, BAIK S S, RYU S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science, 2015, 349(6249): 723-726. |
15 | CHEN W S, OUYANG J, LIU H, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017, 29(5): 1603864. |
16 | CHEN W S, OUYANG J, YI X Y, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy[J]. Advanced Materials, 2018, 30(3): 1703458. |
17 | OUYANG J, DENG Y Y, CHEN W S, et al. Marriage of artificial catalase and black phosphorus nanosheets for reinforced photodynamic antitumor therapy[J]. Journal of Materials Chemistry B, 2018, 6(14): 2057-2064. |
18 | OUYANG J, LIU R Y, CHEN W S, et al. A black phosphorus based synergistic antibacterial platform against drug resistant bacteria[J]. Journal of Materials Chemistry B, 2018, 6(39): 6302-6310. |
19 | 梁一尊, 葛艳清, 王驰, 等. 低维黑磷的制备及其在光催化降解领域的应用研究进展[J]. 化工进展, 2021, 40(2): 845-858. |
LIANG Yizun, GE Yanqing, WANG Chi, et al. Research progress on preparation of low-dimensional black phosphorus and its applications in photodegradation field[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 845-858. | |
20 | 黄申洋, 张国伟, 汪凡洁, 等. 二维黑磷的光学性质[J]. 物理学报, 2021, 70(2): 168-179. |
HUANG Shenyang, ZHANG Guowei, WANG Fanjie, et al. Optical properties of two-dimensional black phosphorus[J]. Acta Physica Sinica, 2021, 70(2): 168-179. | |
21 | TIAN B, TIAN B, SMITH B, et al. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K[J]. Nature Communications, 2018, 9(1): 1397. |
22 | CAI Z, LIU B, ZOU X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J]. Chemical Reviews, 2018, 118(13): 6091-6133. |
23 | 刘艳奇, 何路东, 廉培超, 等. 黑磷烯稳定性增强研究进展[J]. 化工学报, 2020, 71(3): 936-944. |
LIU Yanqi, HE Ludong, LIAN Peichao, et al. Progress on stability enhancement of black phosphorene[J]. CIESC Journal, 2020, 71(3): 936-944. | |
24 | XIA F N, WANG H, HWANG J C M, et al. Black phosphorus and its isoelectronic materials[J]. Nature Reviews Physics, 2019, 1(5): 306-317. |
25 | YIN T, LONG L, TANG X, et al. Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation[J]. Advanced Science, 2020, 7(19): 2001431. |
26 | GUSMÃO R, SOFER Z, PUMERA M. Black phosphorus rediscovered: from bulk material to monolayers[J]. Angewandte Chemie International Edition, 2017, 56(28): 8052-8072. |
27 | BATMUNKH M, SHRESTHA A, BAT-ERDENE M, et al. Electrocatalytic activity of a 2D phosphorene-based heteroelectrocatalyst for photoelectrochemical cells[J]. Angewandte Chemie International Edition, 2018, 57(10): 2644-2647. |
28 | GE X X, XIA Z H, GUO S J. Recent advances on black phosphorus for biomedicine and biosensing[J]. Advanced Functional Materials, 2019, 29(29): 1900318. |
29 | GUI R, JIN H, WANG Z, et al. Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications[J]. Chemical Society Reviews, 2018, 47(17): 6795-6823. |
30 | 朱晋潇, 刘晓东, 薛敏钊, 等. 磷烯的制备、结构、性质及器件应用[J]. 物理化学学报, 2017, 33(11): 2153-2172. |
ZHU Jinxiao, LIU Xiaodong, XUE Minzhao, et al. Phosphorene: synthesis, structure, properties and device applications[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2153-2172. | |
31 | LIU H J, SONG H J, SU Y Y, et al. Recent advances in black phosphorus-based optical sensors[J]. Applied Spectroscopy Reviews, 2019, 54(3): 275-284. |
32 | ZHOU Y, ZHANG M X, GUO Z N, et al. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices[J]. Materials Horizons, 2017, 4(6): 997-1019. |
33 | PUMERA M. Phosphorene and black phosphorus for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2017, 93: 1-6. |
34 | LEE E, YOON Y S, KIM D J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing[J]. ACS Sensors, 2018, 3(10): 2045-2060. |
35 | YANG S X, JIANG C B, WEI S H. Gas sensing in 2D materials[J]. Applied Physics Reviews, 2017, 4(2): 021304. |
36 | MENG Z, STOLZ R M, MENDECKI L, et al. Electrically-transduced chemical sensors based on two dimensional nanomaterials[J]. Chemical Reviews, 2019, 119(1): 478-598. |
37 | 杨志, 李泊龙, 韩雨彤, 等. 二维过渡金属硫族化合物纳米异质结气体传感器研究进展[J]. 科学通报, 2019, 64(35): 3699-3716. |
YANG Z, LI B L, HAN Y T, et al. Gas sensors based on two-dimensional transition metal dichalcogenide nanoheterojunctions[J]. Chinese Science Bulletin, 2019, 64: 3699-3716. | |
38 | YUAN S Y, ZHANG S L. Recent progress on gas sensors based on graphene-like 2D/2D nanocomposites[J]. Journal of Semiconductors, 2019, 40(11): 111608. |
39 | LIU X H, MA T T, PINNA N, et al. Two-dimensional nanostructured materials for gas sensing[J]. Advanced Functional Materials, 2017, 27(37): 1702168. |
40 | ROY P K, LUXA J, SOFER Z. Emerging pnictogen-based 2D semiconductors: sensing and electronic devices[J]. Nanoscale, 2020, 12(19): 10430-10446. |
41 | KOU L, FRAUENHEIM T, CHEN C. Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response[J]. The Journal of Physical Chemistry Letters, 2014, 5(15): 2675-2681. |
42 | LIU Y, WANG Y, IKRAM M, et al. Facile synthesis of highly dispersed Co3O4 nanoparticles on expanded, thin black phosphorus for a ppb-Level NO x gas sensor[J]. ACS Sensors, 2018, 3(8): 1576-1583. |
43 | JIANG X H, QIN S C, CAO Y, et al. Stable one-dimensional single crystalline black phosphorus nanowires for gas sensing[J]. ACS Applied Nano Materials, 2020, 3(4): 3402-3409. |
44 | ZHUGE Z, TANG Y H, TAO J W, et al. Functionalized black phosphorus nanocomposite for biosensing[J]. ChemElectroChem, 2019, 6(4): 1129-1133. |
45 | MAYORGA-MARTINEZ C C, SOFER Z, PUMERA M. Layered black phosphorus as a selective vapor sensor[J]. Angewandte Chemie International Edition, 2015, 54(48): 14317-14320. |
46 | YASAEI P, BEHRANGINIA A, FOROOZAN T, et al. Stable and selective humidity sensing using stacked black phosphorus flakes[J]. ACS Nano, 2015, 9(10): 9898-9905. |
47 | YAN S C, WANG B J, WANG Z L, et al. Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing[J]. Biosensors and Bioelectronics, 2016, 80: 34-38. |
48 | DING H C, ZHANG L, TANG Z R, et al. Black phosphorus quantum dots doped ZnO nanoparticles as efficient electrode materials for sensitive hydrogen peroxide detection[J]. Journal of Electroanalytical Chemistry, 2018, 824: 161-168. |
49 | ZHAO Y, ZHANG Y H, ZHUGE Z, et al. Synthesis of a poly-L-lysine/black phosphorus hybrid for biosensors[J]. Analytical Chemistry, 2018, 90(5): 3149-3155. |
50 | ZHAO Y, ZHUGE Z, TANG Y H, et al. Synthesis of a CuNP/chitosan/black phosphorus nanocomposite for non-enzymatic hydrogen peroxide sensing[J]. Analyst, 2020, 145(22): 7260-7266. |
51 | MAYORGA-MARTINEZ C C, SOFER Z, PUMERA M. Binary phosphorene redox behavior in oxidoreductase enzymatic systems[J]. ACS Nano, 2019, 13(11): 13217-13224. |
52 | ZHANG Z X, LI Y Y, XU J K, et al. Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly(3,4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C[J]. Journal of Electroanalytical Chemistry, 2018, 814: 153-160. |
53 | TIAN K J, HU L, DONG Y P, et al. Application of black phosphorus nanosheets modified electrode for electrochemical determination of ascorbic acid[J]. Russian Journal of Electrochemistry, 2019, 55(12): 1221-1228. |
54 | DURAI L, GOPALAKRISHNAN A, VISHNU N, et al. Polyaniline sheathed black phosphorous: a novel, advanced platform for electrochemical sensing applications[J]. Electroanalysis, 2020, 32(2): 238-247. |
55 | ZOU J, YU J-G. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers[J]. Materials Science and Engineering C, 2020, 112: 110910. |
56 | ZOU J, LAN X W, ZHAO G Q, et al. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers[J]. Microchimica Acta, 2020, 187(11): 1-11. |
57 | SARSWAT P K, FREE M L. Real-time detection of thiols using CoPc modified black-phosphorus based sensors[J]. Journal of the Electrochemical Society, 2019, 166(2): B1-B8. |
58 | GE Y, CAMARADA M B, XU L J, et al. A highly stable black phosphorene nanocomposite for voltammetric detection of clenbuterol[J]. Microchimica Acta, 2018, 185(12): 1-10. |
59 | XIANG Y, CAMARADA M B, WEN Y P, et al. Simple voltammetric analyses of ochratoxin A in food samples using highly-stable and anti-fouling black phosphorene nanosensor[J]. Electrochimica Acta, 2018, 282: 490-498. |
60 | XU J Q, QIAO X J, WANG Y, et al. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin[J]. Microchimica Acta, 2019, 186(4): 1-8. |
61 | CAI J Y, SUN B L, LI W Y, et al. Novel nanomaterial of porous graphene functionalized black phosphorus as electrochemical sensor platform for bisphenol A detection[J]. Journal of Electroanalytical Chemistry, 2019, 835: 1-9. |
62 | WU L, MENG Q, XU Z, et al. Passivation of black phosphorus as organic-phase enzyme platform for bisphenol A determination[J]. Analytica Chimica Acta, 2020, 1095: 197-203. |
63 | LIANG S, WU L D, LIU H, et al. Organic molecular passivation of phosphorene: an aptamer-based biosensing platform[J]. Biosensors and Bioelectronics, 2019, 126: 30-35. |
64 | KUMAR V, BRENT J R, SHORIE M, et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22860-22868. |
65 | TUTEJA S K, NEETHIRAJAN S. Exploration of two-dimensional bio-functionalized phosphorene nanosheets (black phosphorous) for label free haptoglobin electro-immunosensing applications[J]. Nanotechnology, 2018, 29(13): 135101. |
66 | MAYORGA-MARTINEZ C C, MOHAMAD LATIFF N, ENG A Y S, et al. Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation[J]. Analytical Chemistry, 2016, 88(20): 10074-10079. |
67 | CHEN Y T, REN R, PU H H, et al. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets[J]. Biosensors and Bioelectronics, 2017, 89: 505-510. |
68 | CAI J Y, GOU X D, SUN B L, et al. Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin[J]. Biosensors and Bioelectronics, 2019, 137: 88-95. |
69 | JAKÓBCZYK P, KOWALSKI M, BRODOWSKI M, et al. Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: a novel route towards Haemophilus Influenzae pathogen biosensing devices[J]. Applied Surface Science, 2021, 539: 148286. |
70 | SHI H H, GE S G, WANG Y H, et al. Wide-spectrum-responsive paper-supported photoelectrochemical sensing platform based on black phosphorus-sensitized TiO2 [J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41062-41068. |
71 | SUN Y J, JIN H, JIANG X W, et al. Black phosphorus nanosheets adhering to thionine-doped 2D MOF as a smart aptasensor enabling accurate capture and ratiometric electrochemical detection of target microRNA[J]. Sensors and Actuators B: Chemical, 2020, 309: 127777. |
72 | GAO C M, YU H H, WANG Y H, et al. Paper-based constant potential electrochemiluminescence sensing platform with black phosphorus as a luminophore enabled by a perovskite solar cell[J]. Analytical Chemistry, 2020, 92(10): 6822-6826. |
73 | DING H C, TANG Z R, DONG Y P. Synthesis of black phosphorus quantum dots doped ZnO nanoparticles and its electrogenerated chemiluminescent sensing application[J]. ECS Journal of Solid State Science and Technology, 2018, 7(9): R135-R141. |
74 | LIU S P, LUO J J, JIANG X X, et al. Gold nanoparticle-modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells[J]. Microchimica Acta, 2020, 187(7): 1-9. |
75 | XU H B, ZHENG J, LIANG H, et al. Electrochemical sensor for cancer cell detection using calix[8]arene/polydopamine/phosphorene nanocomposite based on host-guest recognition[J]. Sensors and Actuators B: Chemical, 2020, 317: 128193. |
76 | FANG D D, ZHAO D D, ZHANG S P, et al. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing[J]. Sensors and Actuators B: Chemical, 2020, 305: 127544. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[6] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[12] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[13] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[14] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[15] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |