化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5764-5775.DOI: 10.16085/j.issn.1000-6613.2022-2267
收稿日期:
2022-12-06
修回日期:
2023-01-20
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
刘鹤
作者简介:
郭丽珍(1994—),女,硕士,实习研究员,研究方向为林业生物质资源的化学利用。E-mail:guolizhen2014@163.com。
基金资助:
GUO Lizhen(), LIN Xiangyu, DONG Fuhao, WANG Zhuomin, LIU He()
Received:
2022-12-06
Revised:
2023-01-20
Online:
2023-11-20
Published:
2023-12-15
Contact:
LIU He
摘要:
随着人类社会工业的快速发展,汞排放对生态环境及人类健康带来了巨大的隐患。汞处理常用方法包括化学沉淀法、离子交换法、吸附法等方法。其中,化学沉淀法虽可以有效去除废水中大部分的汞,但硫化物用量难以控制,同时易引起水质硬化和二次污染;离子交换法处理的水质高、设备简单、汞吸收速度快且无二次污染,但因受交换剂种类、用量和成本等限制而尚未被广泛推广使用;吸附法通常不会向需处理的水体中引入新污染物,并且具有较高的汞去除率,同时易操作、选择性好,因此其相关技术的研究开发更具潜力。由逆硫化法制备的聚合物——硫系有机/无机聚合物(CHIPs)是一种新型高效的汞吸附剂,为解决汞污染提供了新思路。本文介绍了逆硫化法的基本原理,概括了利用致孔剂、二氧化碳发泡、静电纺丝、碳化等制备多孔CHIPs的不同方法,归纳了多孔CHIPs的汞吸附机理以及在汞吸附领域的应用研究进展,并展望了多孔CHIPs的发展前景,指出具有生物相容性和可降解性的多孔CHIPs将成为下一步研究重点,同时多孔CHIPs的毒性探究、在大气和土壤中的汞吸附应用也将成为重要的研究方向之一,从而为多孔CHIPs在汞吸附领域的应用拓宽新思路。
中图分类号:
郭丽珍, 林详宇, 董阜豪, 王倬敏, 刘鹤. 多孔高硫聚合物的制备及其在汞吸附中的应用[J]. 化工进展, 2023, 42(11): 5764-5775.
GUO Lizhen, LIN Xiangyu, DONG Fuhao, WANG Zhuomin, LIU He. Preparation of the porous high sulfur polymers and its application in mercury adsorption[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5764-5775.
制备 方法 | 孔径 | 比表面积 | 吸附 等温线 | 金属吸附量 | 参考 文献 |
---|---|---|---|---|---|
致孔剂 | 100~200μm | — | Ⅰ型 | 119~470μg/g | [ |
二氧化碳 发泡 | 0.2~20μm | — | — | (52±1.8)mg/g | [ |
静电纺丝 | <1μm | 2.35m2/g | Ⅱ型 | — | [ |
炭化 | <2nm和 2~50nm | >110m2/g | Ⅰ和Ⅱ型 | 1.1~187mg/g | [ |
表1 不同方法制备的多孔CHIPs的性能
制备 方法 | 孔径 | 比表面积 | 吸附 等温线 | 金属吸附量 | 参考 文献 |
---|---|---|---|---|---|
致孔剂 | 100~200μm | — | Ⅰ型 | 119~470μg/g | [ |
二氧化碳 发泡 | 0.2~20μm | — | — | (52±1.8)mg/g | [ |
静电纺丝 | <1μm | 2.35m2/g | Ⅱ型 | — | [ |
炭化 | <2nm和 2~50nm | >110m2/g | Ⅰ和Ⅱ型 | 1.1~187mg/g | [ |
1 | WU Y, WANG S X, STREETS D G, et al. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environmental Science & Technology, 2006, 40(17): 5312-5318. |
2 | CLARKSON T W, MAGOS L. The toxicology of mercury and its chemical compounds[J]. Critical Reviews in Toxicology, 2006, 36(8): 609-662. |
3 | ULLRICH S M, TANTON T W, ABDRASHITOVA S A. Mercury in the aquatic environment: A review of factors affecting methylation[J]. Critical Reviews in Environmental Science and Technology, 2001, 31(3): 241-293. |
4 | ZAHIR F, RIZWI S J, HAQ S K, et al. Low dose mercury toxicity and human health[J]. Environmental Toxicology and Pharmacology, 2005, 20(2): 351-360. |
5 | BECKERS Felix, RINKLEBE Joerg. Cycling of mercury in the environment: Sources, fate, and human health implications: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(9): 693-794. |
6 | O'CONNOR D, HOU D, OK Y S, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review[J]. Environment International, 2019, 126: 747-761. |
7 | ARIYA P A, AMYOT M, DASTOOR A, et al. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions[J]. Chemical Reviews, 2015, 115(10): 3760-3802. |
8 | SELIN N E. Global change and mercury cycling: Challenges for implementing a global mercury treaty[J]. Environmental Toxicology and Chemistry, 2014, 33(6): 1202-1210. |
9 | LIN C J, PEHKONEN S O. The chemistry of atmospheric mercury: A review[J]. Atmospheric Environment, 1999, 33(13): 2067-2079. |
10 | WU C Y, MOURI H, CHEN S S, et al. Removal of trace-amount mercury from wastewater by forward osmosis[J]. Journal of Water Process Engineering, 2016, 14: 108-116. |
11 | CAI Chong, WANG Ran, LIU Shufeng, et al. Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589: 124468. |
12 | FENG Wenguo, KWON Seokjoon, FENG Xue, et al. Sulfur impregnation on activated carbon fibers through H2S oxidation for vapor phase mercury removal[J]. Journal of Environmental Engineering, 2006, 132(3): 292-300. |
13 | HSI H C, ROOD M J, ROSTAM-ABADI M, et al. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs)[J]. Environmental Science & Technology, 2001, 35(13): 2785-2791. |
14 | HASELL T, PARKER D J, JONES H A, et al. Porous inverse vulcanised polymers for mercury capture[J]. Chemical Communications, 2016, 52(31): 5383-5386. |
15 | BEAR J C, PEVELER W J, MCNAUGHTER P D, et al. Nanoparticle-sulphur “inverse vulcanisation” polymer composites[J]. Chemical Communications, 2015, 51(52): 10467-10470. |
16 | HOEFLING A, NGUYEN D T, LEE Y J, et al. A sulfur-eugenol allyl ether copolymer: A material synthesized via inverse vulcanization from renewable resources and its application in Li-S batteries[J]. Materials Chemistry Frontiers, 2017, 1(9): 1818-1822. |
17 | HOEFLING A, LEE Y J, THEATO P. Sulfur-based polymer composites from vegetable oils and elemental sulfur: A sustainable active material for Li-S batteries[J]. Macromolecular Chemistry and Physics, 2017, 218(1): 1600303. |
18 | MANN M, KRUGER J E, ANDARI F, et al. Sulfur polymer composites as controlled-release fertilisers[J]. Organic & Biomolecular Chemistry, 2019, 17(7): 1929-1936. |
19 | DIRLAM P T, SIMMONDS A G, KLEINE T S, et al. Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li-S batteries[J]. RSC Advances, 2015, 5(31): 24718-24722. |
20 | SMITH J A, WU X F, BERRY N G, et al. High sulfur content polymers: The effect of crosslinker structure on inverse vulcanization[J]. Journal of Polymer Science A: Polymer Chemistry, 2018, 56(16): 1777-1781. |
21 | WESTERMAN C R, JENKINS C L. Dynamic sulfur bonds initiate polymerization of vinyl and allyl ethers at mild temperatures[J]. Macromolecules, 2018, 51(18): 7233-7238. |
22 | KWON Minho, LEE Hongchan, LEE Seohui, et al. Dynamic covalent polymerization of chalcogenide hybrid inorganic/organic polymer resins with norbornenyl comonomers[J]. Macromolecular Research, 2020, 28(11): 1003-1009. |
23 | LIU Yanxia, CHEN Yidan, ZHANG Yagang, et al. Density-adjustable bio-based polysulfide composite prepared by inverse vulcanization and bio-based fillers[J]. Polymers, 2020, 12(9): 2127. |
24 | SMITH J A, GREEN S J, PETCHER S, et al. Crosslinker copolymerization for property control in inverse vulcanization[J]. Chemistry: A European Journal, 2019, 25(44): 10433-10440. |
25 | ZENG Shuaibo, LI Ligui, XIE Lihong, et al. Conducting polymers crosslinked with sulfur as cathode materials for high-rate, ultralong-life lithium-sulfur batteries[J]. ChemSusChem, 2017, 10(17): 3378-3386. |
26 | PARKER D J, JONES H A, PETCHER S, et al. Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture[J]. Journal of Materials Chemistry A, 2017, 5(23): 11682-11692. |
27 | NGUYEN T B. Elemental sulfur and molecular iodine as efficient tools for carbon-nitrogen bond formation through redox reactions[J]. Asian Journal of Organic Chemistry, 2017, 6(5): 477-491. |
28 | WRECZYCKI J, BIELIŃSKI D M, ANYSZKA R. Sulfur/organic copolymers as curing agents for rubber[J]. Polymers, 2018, 10(8): 870. |
29 | KUTNEY Gerald. Sulfur: History, technology, applications & industry[M]. Toronto: Chem. Tec. Publishing, 2007. |
30 | HU Jinghong, LEI Zhengdong, CHEN Zhangxin, et al. Effect of sulphur deposition on well performance in a sour gas reservoir[J]. The Canadian Journal of Chemical Engineering, 2018, 96(4): 886-894. |
31 | MILLER G W. Thermal analysis of polymers. VIII. Dilatometric and thermal optical behavior of sulfur[J]. Journal of Applied Polymer Science, 1971, 15(8): 1985-1994. |
32 | BOYD D A. Sulfur and its role in modern materials science[J]. Angewandte Chemie-International Edition, 2016, 55(50): 15486-15502. |
33 | NGUYEN T B. Recent advances in organic reactions involving elemental sulfur[J]. Advanced Synthesis & Catalysis, 2017, 359(7): 1066-1130. |
34 | GRIEBEL J J, GLASS R S, CHAR K, et al. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense[J]. Progress in Polymer Science, 2016, 58: 90-125. |
35 | WORTHINGTON M J, KUCERA R L, CHALKER J M. Green chemistry and polymers made from sulfur[J]. Green Chemistry, 2017, 19(12): 2748-2761. |
36 | DIEZ Sergei, HOEFLING Alexande, THEATO Patrick, et al. Mechanical and electrical properties of sulfur-containing polymeric materials prepared via inverse vulcanization[J]. Polymers, 2017, 9(2): 59. |
37 | CHUNG W J, GRIEBEL J J, KIM E T, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials[J]. Nature Chemistry, 2013, 5(6): 518-524. |
38 | BOYD D A, BAKER C C, MYERS J D, et al. ORMOCHALCs: Organically modified chalcogenide polymers for infrared optics[J]. Chemical Communications, 2016, 53(1): 259-262. |
39 | LUNDQUIST N A, TIKOALU A D, WORTHINGTON M J, et al. Reactive compression molding post-inverse vulcanization: A method to assemble, recycle, and repurpose sulfur polymers and composites[J]. Chemistry: A European Journal, 2020, 26(44): 10035-10044. |
40 | HERRERA C, YSINGA K J, JENKINS C L. Polysulfides synthesized from renewable garlic components and repurposed sulfur form environmentally friendly adhesives[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35312-35318. |
41 | PETCHER Samuel, ZHANG Bowen, HASELL Tom. Mesoporous knitted inverse vulcanised polymers[J]. Chemical Communications, 2021, 57(41): 5059-5062. |
42 | TIKOALU A D, LUNDQUIST N A, CHALKER J M. Mercury sorbents made by inverse vulcanization of sustainable triglycerides: The plant oil structure influences the rate of mercury removal from water[J]. Advanced Sustainable Systems, 2020, 4(3): 1900111. |
43 | GOMEZ I, LEONET O, BLAZQUEZ J A, et al. Inverse vulcanization of sulfur using natural dienes as sustainable materials for lithium-sulfur batteries[J]. ChemSusChem, 2016, 9(24): 3419-3425. |
44 | CHALKER J M, WORTHINGTON M J, LUNDQUIST N A, et al. Synthesis and applications of polymers made by inverse vulcanization[J]. Topics in Current Chemistry, 2019, 377(3): 16. |
45 | WU X F, SMITH J A, PETCHER S, et al. Catalytic inverse vulcanization[J]. Nature Communications, 2019, 10: 647. |
46 | KLEINE T S, NGUYEN N A, ANDERSON L E, et al. High refractive index copolymers with improved thermomechanical properties via the inverse vulcanization of sulfur and 1,3,5-triisopropenylbenzene[J]. ACS Macro Letters, 2016, 5(10): 1152-1156. |
47 | SING K S. Assessment of surface area by gas adsorption[M]. France: Adsorption by Powders and Porous Solids, 2013: 237-268. |
48 | TIEN Chi. Introduction to adsorption: Chapter 3-Adsorption equilibrium relationships, isotherm expressions, their determinations, and predictions[M]. USA: Elsevier, 2019: 23-85. |
49 | BARTON T J, BULL LUCY M, KLEMPERER W G, et al. Tailored porous materials[J]. Chemistry of Materials, 1999, 11(10): 2633-2656. |
50 | SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
51 | WORTHINGTON M J, KUCERA R L, ALBUQUERQUE I S, et al. Laying waste to mercury: Inexpensive sorbents made from sulfur and recycled cooking oils[J]. Chemistry—A European Journal, 2017, 23(64): 16219-16230. |
52 | LUNDQUIST N A, WORTHINGTON M J, ADAMSON N, et al. Polysulfides made from re-purposed waste are sustainable materials for removing iron from water[J]. RSC Advances, 2018, 8(3): 1232-1236. |
53 | ABRAHAM A M, KUMAR S V, ALHASSAN S M. Porous sulphur copolymer for gas-phase mercury removal and thermal insulation[J]. Chemical Engineering Journal, 2018, 332: 1-7. |
54 | REN Zixuan, JIANG Xue, LIU Lingli, et al. Modification of high-sulfur polymer using a mixture porogen and its application as advanced adsorbents for Au( Ⅲ ) from wastewater[J]. Journal of Molecular Liquids, 2021, 328: 115437. |
55 | KOEBEL M, STRUTZ E O. Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermochemical and practical aspects[J]. Industrial & Engineering Chemistry Research, 2003, 42(10): 2093-2100. |
56 | JACOBS L J, KEMMERE M F, KEURENTJES J T. Sustainable polymer foaming using high pressure carbon dioxide: A review on fundamentals, processes and applications[J]. Green Chemistry, 2008, 10(7): 731-738. |
57 | COOPER A I. Polymer synthesis and processing using supercritical carbon dioxide[J]. Journal of Materials Chemistry, 2000, 10(2): 207-234. |
58 | NALAWADE S P, PICCHIONI F, JANSSEN L P. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications[J]. Progress in Polymer Science, 2006, 31(1): 19-43. |
59 | PICCHIONI Francesco. Supercritical carbon dioxide and polymers: An interplay of science and technology[J]. Polymer International, 2014, 63(8): 1394-1399. |
60 | LIN H K, LAI Y S, LIU Y L. Cross-linkable and self-foaming polysulfide materials for repairable and mercury capture applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4515-4522. |
61 | KO L A, HUANG Y S, LIN Y A. Bipyridine-containing polysulfide materials for broad-spectrum removal of heavy metals from water[J]. ACS Applied Polymer Materials, 2021, 3(7): 3363-3372. |
62 | XUE Jiajia, WU Tong, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415. |
63 | HUANG Yunpeng, MIAO Yue'e, LIU Tianxi. Electrospun fibrous membranes for efficient heavy metal removal[J]. Journal of Applied Polymer Science, 2014, 131(19): 40864. |
64 | WANJALE Santosh, BIRAJDAR Mallinath, Jyoti JOG, et al. Surface tailored PS/TiO2 composite nanofiber membrane for copper removal from water[J]. Journal of Colloid and Interface Science, 2016, 469: 31-37. |
65 | SANG Yimin, LI Fasheng, GU Qingbao, et al. Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane[J]. Desalination, 2008, 223(1/2/3): 349-360. |
66 | THIELKE M W, BULTEMA L A, BRAUER D D, et al. Rapid mercury(Ⅱ) removal by electrospun sulfur copolymers[J]. Polymers, 2016, 8(7): 266. |
67 | LIMJUCO L A, NISOLA G M, PAROHINOG K J, et al. Water-insoluble hydrophilic polysulfides as microfibrous composites towards highly effective and practical Hg2+ capture[J]. Chemical Engineering Journal, 2019, 378: 122216. |
68 | BEAR J C, MCGETTRICK J D, PARKIN I P, et al. Porous carbons from inverse vulcanised polymers[J]. Microporous and Mesoporous Materials, 2016, 232: 189-195. |
69 | MANN M, LUO X, TIKOALU A D, et al. Carbonisation of a polymer made from sulfur and canola oil[J]. Chemical Communications, 2021, 57(51): 6296-6299. |
70 | LEE J M, PARKER D J, COOPER A I, et al. High surface area sulfur-doped microporous carbons from inverse vulcanised polymers[J]. Journal of Materials Chemistry A, 2017, 5(35): 18603-18609. |
71 | ZHANG Bowen, PETCHER Samuel, GAO Hui, et al. Magnetic sulfur-doped carbons for mercury adsorption[J]. Journal of Colloid and Interface Science, 2021, 603: 728-737. |
72 | 冯新斌, 陈玖斌, 付学吾, 等. 汞的环境地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(5): 503-530. |
FENG Xinbin, CHEN Jiubin, FU Xuewu, et al. Progresses on environmental geochemistry of mercury[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 503-530. | |
73 | 孙阳昭, 陈扬, 蓝虹, 等. 中国汞污染的来源、成因及控制技术路径分析[J]. 环境化学, 2013, 32(6): 937-942. |
SUN Yangzhao, CHEN Yang, LAN Hong, et al. Study on pollution sources, cause of mercury pollution and its control technical roadmap in China[J]. Environmental Chemistry, 2013, 32(6): 937-942. | |
74 | 张霞忠, 袁烈梅. 汞吸附研究进展[J]. 环境污染与防治, 2017, 39(5): 563-568. |
ZHANG Xiazhong, YUAN Liemei. Research progress of mercury adsorption[J]. Environmental Pollution & Control, 2017, 39(5): 563-568. | |
75 | AKAY Sema, KAYAN Berkant, KALDERIS Dimitrios, et al. Poly(benzoxazine-co-sulfur): An efficient sorbent for mercury removal from aqueous solution[J]. Journal of Applied Polymer Science, 2017, 134(38): 45306. |
76 | RICE K M, WALKER E M, WU M Z, et al. Environmental mercury and its toxic effects[J]. Journal of Preventive Medicine and Public Health, 2014, 47(2): 74-83. |
77 | WADI V S, MITTAL H, FOSSO-KANKEU E, et al. Mercury removal by porous sulfur copolymers: Adsorption isotherm and kinetics studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606: 125333. |
78 | WADI V K, JENA K K, KHAWAJA S Z, et al. NMR and EPR structural analysis and stability study of inverse vulcanized sulfur copolymers[J]. ACS Omega, 2018, 3(3): 3330-3339. |
79 | XU Yang, WANG Tianqi, HE Zidong, et al. A polymerization-cutting strategy: Self-protection synthesis of thiol-based nanoporous adsorbents for efficient mercury removal[J]. Chemistry: A European Journal, 2018, 24(54): 14436-14441. |
80 | WANG Qingfeng, LIU Yue, YANG Zhenmei, et al. Study of mercury re-emission in a simulated WFGD solution containing thiocyanate and sulfide ions[J]. Fuel, 2014, 134: 588-594. |
81 | DIRINGER S E, FEINGOLD B J, ORTIZ E J, et al. River transport of mercury from artisanal and small-scale gold mining and risks for dietary mercury exposure in Madre de Dios, Peru[J]. Environmental Science Processes & Impacts, 2015, 17(2): 478-487. |
82 | TCHOUNWOU P B, AYENSU W K, NINASHVILI N, et al. Environmental exposure to mercury and its toxicopathologic implications for public health[J]. Environmental Toxicology, 2003, 18(3): 149-175. |
83 | MASON R P, ROLFHUS K R, FITZGERALD W F. Methylated and elemental mercury cycling in surface and deep ocean waters of the North Atlantic[J]. Water, Air, and Soil Pollution, 1995, 80(1): 665-677. |
84 | CROCKETT M P, EVANS A M, WORTHINGTON M J, et al. Sulfur-limonene polysulfide: A material synthesized entirely from industrial by-products and its use in removing toxic metals from water and soil[J]. Angewandte Chemie-International Edition, 2016, 55(5): 1714-1718. |
[1] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[2] | 张婷婷, 潘大伟, 巨晓洁, 刘壮, 谢锐, 汪伟, 褚良银. Hg2+响应型智能凝胶检测光栅的构建与性能[J]. 化工进展, 2023, 42(8): 4143-4152. |
[3] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[4] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[5] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[6] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
[7] | 孔祥如, 张肖阳, 孙鹏翔, 崔琳, 董勇. 直接空气捕碳固体多孔材料的研究进展[J]. 化工进展, 2023, 42(3): 1471-1483. |
[8] | 金鑫, 李玉姗, 解青青, 王梦雨, 夏星帆, 杨朝合. 多孔材料催化丙酮缩甘油合成研究进展[J]. 化工进展, 2023, 42(2): 731-743. |
[9] | 马文杰, 姚卫棠. 共价有机框架(COFs)在锂离子电池中的应用[J]. 化工进展, 2023, 42(10): 5339-5352. |
[10] | 刘战剑, 杨金月, 景境, 张曦光, 汪怀远. 三维超浸润多孔材料在油水分离中的研究进展[J]. 化工进展, 2023, 42(1): 310-320. |
[11] | 曾军建, 赵基钢. 乙炔氢氯化金基无汞催化剂的研究进展[J]. 化工进展, 2022, 41(7): 3589-3596. |
[12] | 狄冠丞, 周强, 陶信, 尚瑜, 宋涛, 卢平, 徐贵玲. 掺硫介孔炭的制备及其汞脱除特性[J]. 化工进展, 2022, 41(5): 2761-2769. |
[13] | 孔祥宇, 谢亮, 王延民, 翟尚鹏, 王建国. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. |
[14] | 高天, 张伊黎, 熊卓, 赵永椿, 张军营. 改性氧化钛光催化氧化单质汞性能及其影响因素研究进展[J]. 化工进展, 2022, 41(2): 690-700. |
[15] | 梁格, 黄翔峰, 刘婉琪, 熊永娇, 彭开铭. 超疏水三维多孔材料在乳化液油水分离中的应用研究进展[J]. 化工进展, 2022, 41(12): 6557-6572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |