化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5887-5895.DOI: 10.16085/j.issn.1000-6613.2022-0037
黄鑫1(), 刘成2, 唐如佳3, 韩欣欣3, 陈世霞1(), 王珺1
收稿日期:
2022-01-06
修回日期:
2022-04-10
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
陈世霞
作者简介:
黄鑫(1998—),女,硕士研究生,研究方向为电化学还原CO2。E-mail:1270583553@qq.com。
基金资助:
HUANG Xin1(), LIU Cheng2, TANG Rujia3, HAN Xinxin3, CHEN Shixia1(), WANG Jun1
Received:
2022-01-06
Revised:
2022-04-10
Online:
2022-11-25
Published:
2022-11-28
Contact:
CHEN Shixia
摘要:
合理设计高效的电催化剂是二氧化碳电化学还原(CO2ER)为高附加值化学品和燃料的关键。本文利用水热-煅烧法制备了氮掺杂碳限域的花状SnS催化剂(SnS@NC)并研究了其电催化CO2的特性。基于超薄氮掺杂碳层的限域效应,SnS的层厚由原始的30nm缩减至20nm,电化学活性面积明显增强,同时氮掺杂碳层增强了对CO2的吸附和活化。SnS@NC催化CO2转化为甲酸的能力明显增强,在-1.3V(vs. RHE)的H型电解池中法拉第效率为81.2%,电流密度为29.5mA/cm2,本文为金属硫化物复合催化剂功能化提供了新策略。
中图分类号:
黄鑫, 刘成, 唐如佳, 韩欣欣, 陈世霞, 王珺. 氮掺杂碳限域的花状SnS催化CO2电还原制甲酸[J]. 化工进展, 2022, 41(11): 5887-5895.
HUANG Xin, LIU Cheng, TANG Rujia, HAN Xinxin, CHEN Shixia, WANG Jun. Nitrogen-doped carbon-confined flower-like SnS catalyst for electrochemical reduction of CO2 to HCOOH[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5887-5895.
样品 | N/% | C/% | Sn/% | S/% |
---|---|---|---|---|
SnS | 2.09 | 64.22 | 18.11 | 15.15 |
SnS@C | 2.29 | 82.40 | 7.23 | 8.08 |
SnS@NC | 2.66 | 83.64 | 6.38 | 7.33 |
表1 XPS所测得的材料表层Sn、S、N、C各原子的占比
样品 | N/% | C/% | Sn/% | S/% |
---|---|---|---|---|
SnS | 2.09 | 64.22 | 18.11 | 15.15 |
SnS@C | 2.29 | 82.40 | 7.23 | 8.08 |
SnS@NC | 2.66 | 83.64 | 6.38 | 7.33 |
1 | KOTHANDARAMAN J, HELBEBRANT D J. Towards environmentally benign capture and conversion: heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents[J]. Green Chemistry, 2020, 22(3): 828-834. |
2 | BEHERA A, KAR A K, SRIVASTAVA R. Challenges and prospects in the selective photoreduction of CO2 to C1 and C2 products with nanostructured materials: a review[J]. Materials Horizons, 2022, 9: 607-639. |
3 | ZHANG W J, HU Y, MA L B, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals[J]. Advanced Science, 2018, 5(1): 1700275. |
4 | CHOI S Y, JEONG S K, KIM H J, et al. Electrochemical reduction of carbon dioxide to formate on tin-lead alloys[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1311-1318. |
5 | CHANG J F, FENG L G, LIU C P, et al. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells[J]. Angewandte Chemie, 2014, 126(1): 122-130. |
6 | ALVAREZ-GUERRA M, QUINTANILLA S, IRABIEN A. Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode[J]. Chemical Engineering Journal, 2012, 207/208: 278-284. |
7 | ZHOU B W, KONG X H, VANKA S, et al. A GaN: Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis[J]. Energy & Environmental Science, 2019, 12(9): 2842-2848. |
8 | XING Y L, KONG X D, GUO X, et al. Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid[J]. Advanced Science, 2020, 7(22): 1902989. |
9 | HUANG J J, CHEN S X, YANG F Q, et al. Nickel nanoparticles with narrow size distribution confined in nitrogen-doped carbon for efficient reduction of CO2 to CO[J]. Catalysis Letters, 2022, 152(2): 600-609. |
10 | BOK J, LEE S Y, LEE B H, et al. Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate[J]. Journal of the American Chemical Society, 2021, 143(14): 5386-5395. |
11 | ZOUAOUI N, OSSONON B D, FAN M Y, et al. Electroreduction of CO2 to formate on amine modified Pb electrodes[J]. Journal of Materials Chemistry A, 2019, 7(18): 11272-11281. |
12 | PENG L W, WANG Y X, MASOOD I, et al. Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction[J]. Applied Catalysis B: Environmental, 2020, 264: 118447. |
13 | ZHANG A, LIANG Y X, LI H P, et al. Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction[J]. Nano Letters, 2019, 19(9): 6547-6553. |
14 | LI J C, KUANG Y, MENG Y T, et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency[J]. Journal of the American Chemical Society, 2020, 142: 7276-7282. |
15 | KIM M K, LEE H, WON J H, et al. Design of less than 1nm scale spaces on SnO2 nanoparticles for high-performance electrochemical CO2 reduction[J]. Advanced Functional Materials, 2022, 32: 2107349. |
16 | YANG Z J, YANG C Y, HAN J Y, et al. Boosting electrochemical CO2 reduction to formate using SnO2/graphene oxide with amide linkages[J]. Journal of Materials Chemistry A, 2021, 9: 19681-19686. |
17 | ZHANG B H, CHEN S, WULAN B, et al. Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction[J]. Chemical Engineering Journal, 2021, 421: 130003. |
18 | WANG Q N, WU Y L, ZHU C Q, et al. Sn nanoparticles deposited onto a gas diffusion layer via impregnation-electroreduction for enhanced CO2 electroreduction to formate[J]. Electrochimica Acta, 2021, 369: 137662. |
19 | LI Q Q, ZHANG Y X, ZHANG X R, et al. Novel Bi, BiSn, Bi2Sn, Bi3Sn, and Bi4Sn catalysts for efficient electroreduction of CO2 to formic acid[J]. Industrial & Engineering Chemistry Research, 2019, 59(15): 6806-6814. |
20 | CHEN H L, CHEN J X, SI J C, et al. Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate[J]. Chemical Science, 2020, 11(15): 3952-3958. |
21 | VANDAELE K, MOT B T, PUPO M, et al. Sn-based electrocatalyst stability: a crucial piece to the puzzle for the electrochemical CO2 reduction toward formic acid[J]. ACS Energy Letter, 2021, 6: 4317-4327. |
22 | MELCHIONNA M, FORNASIERO P, PRATO M, et al. Electrocatalytic CO2 reduction: role of the cross-talk at nano-carbon interfaces[J]. Energy & Environmental Science, 2021, 14(11): 5816-5833. |
23 | LI Z J, CAO A, ZHENG Q, et al. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate[J]. Advanced Materials, 2020, 33(2): 2005113. |
24 | YE G Y, LIU S Q, HUANG K, et al. Domain-confined etching strategy to regulate defective sites in carbon for high-efficiency electrocatalytic oxygen reduction[J]. Advanced Functional Materials, 2022: 2111396. |
25 | LU Q, CHEN C, DI Q, et al. Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range[J]. ACS Catalysis, 2022, 12(2): 1364-1374. |
26 | YU A, MA G M, ZHU L T, et al. Conversion of CO2 to defective porous carbons in one electro-redox cycle for boosting electrocatalytic H2O2 production[J]. Applied Catalysis B: Environmental, 2022, 307: 121161. |
27 | CHI SHAOYI, CHEN Q, ZHAO S S, et al. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide[J]. Journal of Materials Chemistry A, 2022, 10(9): 4653-4659. |
28 | LIU S, YANG H B, HUANG X, et al. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction[J]. Advanced Functional Materials, 2018, 28(21): 1800499. |
29 | SI Z, LYU Z Z, LU L H, et al. Nitrogen-doped graphene chainmail wrapped IrCo alloy particles on nitrogen-doped graphene nanosheet for highly active and stable full water splitting[J]. ChemCatChem, 2019, 11: 5457-6465. |
30 | CHEN J Y, WANG T T, WANG X Y, et al. Promoting electrochemical CO2 reduction via boosting activation of adsorbed intermediates on iron single-atom catalyst[J]. Advanced Functional Materials: 2022: 2110174. |
31 | CHEN J Y, LI Z G, WANG X Y, et al. Promoting CO2 electroreduction kinetics on atomically dispersed monovalent ZnI sites by rationally engineering proton-feeding centers[J]. Angewandte Chemie International Edition, 2022, 134 (7): e202111683. |
32 | ZHANG Y K, WANG X Y, ZHENG S X, et al. Hierarchical cross-linked carbon aerogels with transition metal-nitrogen sites for highly efficient industrial-level CO2 electroreduction[J]. Advanced Functional Materials, 2021, 31(45): 2104377. |
33 | WANG X Y, SANG X H, DONG C L, et al. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites[J]. Angewandte Chemie International Edition, 2021, 60(21): 11959-11965. |
34 | WANG X Y, FENG X H, LU W C, et al. A new strategy for accelerating dynamic proton transfer of electrochemical CO2 reduction at high current densities[J]. Advanced Functional Materials, 2021, 31(50): 2104243. |
35 | FAN Q K, ZHANG X, GE X H, et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction[J]. Advanced Energy Materials, 2021, 11(36): 2101424. |
36 | CHEN S X, LI Y W, BU Z G, et al. Boosting CO2-to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength[J]. Journal of Materials Chemistry A, 2021, 9(3): 1705-1712. |
37 | HOU Y, LIANG Y L, SHI P C, et al. Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity[J]. Applied Catalysis B: Environmental, 2020, 271: 118929. |
38 | CHEN Z P, ZHANG X X, JIAO M Y, et al. Engineering electronic structure of stannous sulfide by amino‐functionalized carbon: toward efficient electrocatalytic reduction of CO2 to formate[J]. Advanced Energy Materials, 2020, 10(8): 1903664. |
39 | VELASCO-VELEZ J J, JONES T, GAO D F, et al. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1485-1492. |
40 | LIU S B, TAO H B, ZENG L, et al. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. Journal of the American Chemical Society, 2017, 139: 2160-2163. |
41 | YANG F, WANG J, LIU L, et al. Synthesis of porous carbons with high N-content from shrimp shells for efficient CO2-capture and gas separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15550-15559. |
42 | LI F W, CHEN L, XUE M Q, et al. Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets[J]. Nano Energy, 2017, 31: 270-277. |
43 | RABIEE H, ZHANG X Q, GE L, et al. Tuning the product selectivity of the Cu hollow fiber gas diffusion electrode for efficient CO2 reduction to formate by controlled surface Sn electrodeposition[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21670-21681. |
44 | KUANG Z Y, ZHAO W N, PENG C, et al. Hierarchically porous SnO2 coupled organic carbon for CO2 electroreduction[J]. ChemSusChem, 2020, 13(22): 5896-5900. |
45 | GENG W H, CHEN W, LI G H, et al. Induced CO2 electroreduction to formic acid on metal-organic frameworks via node doping[J]. ChemSusChem, 2020, 13(16): 4035-4040. |
46 | YE K, CAO A, SHAO J Q, et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity[J]. Science Bulletin, 2020, 65(19): 711-719. |
47 | LIUS Y, PAG F J, ZHANG Q Y, et al. Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range[J]. Applied Materials Today, 2018, 13: 135-143. |
48 | DAIYAN R, LU X Y, NG Y H, et al. Surface engineered tin foil for electrocatalytic reduction of carbon dioxide to formate[J]. Catalysis Science &Technology, 2017, 7(12): 2542-2550. |
49 | ZHANG Y, ZHANG X L, BOND A M, et al. Identification of a new substrate effect that enhances the electrocatalytic activity of dendritic tin in CO2 reduction[J]. Physical Chemistry Chemical Physics, 2018, 20(8): 5936-5941. |
50 | KUMAR B, ATLAY, BRIAN J P, et al. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion[J]. Angewandte Chemie International Edition, 2017, 56(13): 3645-3649. |
51 | DONG W J, YOO C J, LEE J L. Monolithic nanoporous In-Sn aloy for electrochemical reduction of carbon doxide[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43575-43582. |
52 | HE J, YANG C, YANG X, et al. Hydrophobic electrocatalyst for the enhanced activity of oxygen reduction reaction through controllable liquid/gas/solid interface[J]. Applied Surface Science, 2020, 532: 147357. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[4] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[11] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[12] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |