1 |
金晨, 任大伟, 肖晋宇, 等. 支撑碳中和目标的电力系统源-网-储灵活性资源优化规划研究[J]. 中国电力, 2021, 54(8): 164-174.
|
|
JIN Chen, REN Dawei, XIAO Jinyu, et al. Optimization planning on power system supply-grid-storage flexibility resource for supporting the “carbon neutrality” target of China[J]. Electric Power, 2021, 54(8): 164-174.
|
2 |
安美燕, 赵心蕊, 徐震原, 等. 工业余热回收的耦合压缩-吸收式高温热泵循环[J]. 上海交通大学学报, 2021, 55(4): 434-443.
|
|
AN Meiyan, ZHAO Xinrui, XU Zhenyuan, et al. A hybrid compression-absorption high temperature heat pump cycles for industrial waste heat recovery[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 434-443.
|
3 |
张艺峰, 王茹洁, 邱明英, 等. CO2捕集技术的研究现状[J]. 应用化工, 2021, 50(4): 1082-1086.
|
|
ZHANG Yifeng, WANG Rujie, QIU Mingying, et al. CO2 capture technology research status[J]. Applied Chemical Industry, 2021, 50(4): 1082-1086.
|
4 |
TAMURA S, SUGIMOTO H, YASHIMA M. Desktop gas isotope separation by Knudsen pump[J]. AIP Conference Proceeding, 2019, 2132(1): 190007.
|
5 |
NAKAYE S, SUGIMOTO H, GUPTA N K, et al. Thermally enhanced membrane gas separation[J]. European Journal of Mechanics-B/Fluids, 2015, 49: 36-49.
|
6 |
MATSUMOTO M, NAKAYE S, SUGIMOTO H. Gas separation by the molecular exchange flow through micropores of the membrane[J]. AIP Conference Proceedings, 2016, 1786(1): 080011.
|
7 |
卢苇, 徐昆, 刘进阳,等. 一种热流逸式气体分离系统: CN20170011384.0[P]. 2019-05-17.
|
|
LU Wei, XU Kun, LIU Jinyang, et al. Gas separation system based thermal transpiration effect: CN20170011384.0[P]. 2019-05-17.
|
8 |
许知洲, 卢苇, 张文杰, 等. 基于热流逸效应的串联式气体分离系统设计[J]. 化工进展, 2020, 39(6): 2336-2344.
|
|
XU Zhizhou, LU Wei, ZHANG Wenjie, et al. A design of cascade type gas separation system based on thermal transpiration effect[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2336-2344.
|
9 |
卢苇, 杨林, 曹聪, 等. 一种基于微/纳尺度热流逸效应和宏观涡流冷热效应的气体分离系统: CN104587790B[P]. 2016-08-24.
|
|
LU Wei, YANG Lin, CAO Cong, et al. Gas separating system based on micro/nanoscale thermal transpiration effect and macroscopic eddy current cold and hot effect: CN104587790B[P]. 2016-08-24.
|
10 |
SHARIPOV F, SELEZNEV V. Data on internal rarefied gas flows[J]. Journal of Physical and Chemical Reference Data, 1998, 27(3): 657-706.
|
11 |
KOSUGE S, TAKATA S. Database for flows of binary gas mixtures through a plane microchannel[J]. European Journal of Mechanics B: Fluids, 2008, 27(4): 444-465.
|
12 |
TAKATA S, SUGIMOTO H, KOSUGE S. Gas separation by means of the Knudsen compressor[J]. European Journal of Mechanics B: Fuids, 2007, 26(2): 155-181.
|
13 |
许知洲. 分子交换流效应及其作用下的气体分离研究[D]. 南宁: 广西大学, 2020.
|
|
XU Zhizhou. Analysis of molecular exchange flow effect and its application on gas separation[D]. Nanning: Guangxi University, 2020.
|
14 |
徐昆. 热流逸效应及其作用下的气体分离研究[D]. 南宁: 广西大学, 2017.
|
|
XU Kun. Analysis of thermal transpiration effect and its application on gas separation[D]. Nanning: Guangxi University, 2017.
|
15 |
金苏敏, 陈立云, 朱永长. 两级烟气废热溴化锂制冷机热能利用经济性分析[J]. 工程热物理学报, 2010, 31(1): 19-23.
|
|
JIN Sumin, CHEN Liyun, ZHU Yongchang. Analysis of energy utilizing efficiency in a two-stage LiBr-H2O absorption refrigerator driven by waste heat of flue gas[J]. Journal of Engineering Thermophysics, 2010, 31(1): 19-23.
|
16 |
辛月. 燃煤电厂烟气余热梯级利用降低碳捕集成本[D]. 大连: 大连理工大学, 2017.
|
|
XIN Yue. Cascade utilization of flue gas waste heat in coal-fired power plant to reduce the cost of carbon capture[D]. Dalian: Dalian University of Technology, 2017.
|
17 |
刘振. 燃煤电厂烟道气中二氧化碳吸附捕集过程的研究[D]. 上海:华东理工大学, 2012.
|
|
LIU Zhen. Adsorption process for CO2 capture from flue gas of coal-fire power plant[D]. Shanghai: East China University of Science and Technology, 2012.
|