化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5200-5213.DOI: 10.16085/j.issn.1000-6613.2021-2512
黄洋1(), 张稼骏1, 李家腾1, 夏铭2(), 许春建1()
收稿日期:
2021-12-09
修回日期:
2021-12-21
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
夏铭,许春建
作者简介:
黄洋(1997—),男,硕士研究生,研究方向为精馏分离。E-mail:yh_1@tju.edu.cn。
HUANG Yang1(), ZHANG Jiajun1, LI Jiateng1, XIA Ming2(), XU Chunjian1()
Received:
2021-12-09
Revised:
2021-12-21
Online:
2022-10-20
Published:
2022-10-21
Contact:
XIA Ming, XU Chunjian
摘要:
费托合成水相副产物主要为C1~C8醇(甲醇、乙醇、丙醇、丁醇、戊醇、己醇、庚醇和辛醇)与水的混合物,其中水的质量分数高达95%,且C2~C8醇与水均形成最低共沸物。此类醇水混合物的完全分离虽具重要价值,但难度大、能耗高,一直是学界和工业界的关注热点。本研究充分利用C2~C3醇水混合物的均相共沸物特性和C4~C8醇水混合物的高度非均相共沸物特性,提出两塔-侧线分相器工艺:通过侧线精馏塔实现C1~C3醇水、富C4~C8醇水和水的精准馏分切割;富C4~C8醇水混合物通入分相器以打破精馏边界,其中富水相返回侧线精馏塔,富醇相进入汽提塔,得到无水C4~C8醇混合物。基于年度总成本(total annual cost,TAC)的稳态优化表明,与常规三塔粗分流程相比,两塔-侧线分相器工艺能够降低TAC 14.79%,节约能耗15.96%。进一步,建立了两塔-侧线分相器工艺的控制结构,动态模拟表明,结合浓度控制器与前馈比例的控制结构表现出良好的控制性能。
中图分类号:
黄洋, 张稼骏, 李家腾, 夏铭, 许春建. 费托合成水相副产物混合醇分离: 馏分切割工艺设计及控制[J]. 化工进展, 2022, 41(10): 5200-5213.
HUANG Yang, ZHANG Jiajun, LI Jiateng, XIA Ming, XU Chunjian. Separation of mixed alcohols from Fischer-Tropsch aqueous by-product: design, optimization and control of fraction cutting[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5200-5213.
组分 | 分子式 | 组成(质量分数)/% | 沸点/℃ | 共沸物中的醇质量分数/% | 共沸物沸点/℃ | 溶解度(水) |
---|---|---|---|---|---|---|
甲醇 | CH4O | 0.96 | 65.40 | — | — | 混溶 |
乙醇 | C2H6O | 2.00 | 78.01 | 95.6 | 78.16 | 混溶 |
正丙醇 | C3H8O | 1.00 | 97.20 | 69.0 | 87.63 | 混溶 |
正丁醇 | C4H10O | 0.83 | 118.66 | 56.5 | 91.78 | 微溶 |
正戊醇 | C5H12O | 0.53 | 137.80 | 45.5 | 94.30 | 微溶 |
正己醇 | C6H14O | 0.25 | 157.40 | 25.0 | 97.80 | 微溶 |
正庚醇 | C7H16O | 0.04 | 176.30 | 17.0 | 98.70 | 微溶 |
正辛醇 | C8H18O | 0.01 | 195.20 | 10.0 | 99.40 | 不溶 |
水 | H2O | 94.38 | 100.00 | — | — | — |
表1 混合醇组成及物性数据
组分 | 分子式 | 组成(质量分数)/% | 沸点/℃ | 共沸物中的醇质量分数/% | 共沸物沸点/℃ | 溶解度(水) |
---|---|---|---|---|---|---|
甲醇 | CH4O | 0.96 | 65.40 | — | — | 混溶 |
乙醇 | C2H6O | 2.00 | 78.01 | 95.6 | 78.16 | 混溶 |
正丙醇 | C3H8O | 1.00 | 97.20 | 69.0 | 87.63 | 混溶 |
正丁醇 | C4H10O | 0.83 | 118.66 | 56.5 | 91.78 | 微溶 |
正戊醇 | C5H12O | 0.53 | 137.80 | 45.5 | 94.30 | 微溶 |
正己醇 | C6H14O | 0.25 | 157.40 | 25.0 | 97.80 | 微溶 |
正庚醇 | C7H16O | 0.04 | 176.30 | 17.0 | 98.70 | 微溶 |
正辛醇 | C8H18O | 0.01 | 195.20 | 10.0 | 99.40 | 不溶 |
水 | H2O | 94.38 | 100.00 | — | — | — |
共沸物 | 模拟值/(kg/kg,℃) | 实验值/(kg/kg,℃) |
---|---|---|
乙醇/水 | 0.9581/0.0419,78.17 | 0.956/0.044,78.16 |
丙醇/水 | 0.6914/0.3086,87.73 | 0.690/0.310,87.63 |
丁醇/水 | 0.5742/0.4258,92.64 | 0.565/0.435,91.78 |
戊醇/水 | 0.4492/0.5508,95.87 | 0.455/0.545,94.30 |
己醇/水 | 0.2793/0.7207,98.21 | 0.250/0.750,97.80 |
庚醇/水 | 0.1614/0.8386,99.21 | 0.170/0.830,98.70 |
辛醇/水 | 0.1159/0.8841,99.52 | 0.100/0.900,99.40 |
表2 混合醇体系存在的共沸点的预测值与实验值比较(101.3kPa)
共沸物 | 模拟值/(kg/kg,℃) | 实验值/(kg/kg,℃) |
---|---|---|
乙醇/水 | 0.9581/0.0419,78.17 | 0.956/0.044,78.16 |
丙醇/水 | 0.6914/0.3086,87.73 | 0.690/0.310,87.63 |
丁醇/水 | 0.5742/0.4258,92.64 | 0.565/0.435,91.78 |
戊醇/水 | 0.4492/0.5508,95.87 | 0.455/0.545,94.30 |
己醇/水 | 0.2793/0.7207,98.21 | 0.250/0.750,97.80 |
庚醇/水 | 0.1614/0.8386,99.21 | 0.170/0.830,98.70 |
辛醇/水 | 0.1159/0.8841,99.52 | 0.100/0.900,99.40 |
参数 | 公式 |
---|---|
塔壳费用/USD | (M&S/280)×596.115d1.066H0.802 |
塔板费用/USD | (M&S/280)×12.69d1.55H |
换热器费用①/USD | (M&S/280)×101.3A0.65(2.29+3.75Fd) |
塔高(H)/m | 1.2h (NT-2) |
换热面积(A)②/m2 | Q/(UΔT) |
低压蒸汽(500kPa,160℃) /USD·GJ-1 | 13.28 |
冷却水(30~35℃)/USD·GJ-1 | 0.354 |
M&S | 1638.2(2018)[ |
表3 TAC计算公式和参数
参数 | 公式 |
---|---|
塔壳费用/USD | (M&S/280)×596.115d1.066H0.802 |
塔板费用/USD | (M&S/280)×12.69d1.55H |
换热器费用①/USD | (M&S/280)×101.3A0.65(2.29+3.75Fd) |
塔高(H)/m | 1.2h (NT-2) |
换热面积(A)②/m2 | Q/(UΔT) |
低压蒸汽(500kPa,160℃) /USD·GJ-1 | 13.28 |
冷却水(30~35℃)/USD·GJ-1 | 0.354 |
M&S | 1638.2(2018)[ |
参数 | S1 | S2 |
---|---|---|
进料板 | 19 | 19 |
侧线出料位置 | 18 | 49 |
NT1 | 60 | 60 |
NT2 | 15 | 15 |
塔径/m | ||
d1 | 1.1 | 1.4 |
d2 | 0.5 | 0.25 |
塔板间距/m | ||
h1 | 0.6 | 0.8 |
h2 | 0.4 | 0.2 |
再沸器热负荷/kW | ||
QR1 | 2882.54(差异31.48%①) | 4206.67 |
QR2 | 278.65 | 99.27 |
总再沸器热负荷QR/kW | 3161.19(差异26.59%②) | 4305.94 |
冷凝器热负荷QC/kW | -2502.16 | -3828.01 |
FCI/kUSD·a-1 | 1032.86 | 1275.04 |
OC/kUSD·a-1 | 1237.21 | 1686.71 |
TAC/kUSD·a-1 | 1547.07(差异25.23%③) | 2069.22 |
表4 S1和S2两种分离序列比较
参数 | S1 | S2 |
---|---|---|
进料板 | 19 | 19 |
侧线出料位置 | 18 | 49 |
NT1 | 60 | 60 |
NT2 | 15 | 15 |
塔径/m | ||
d1 | 1.1 | 1.4 |
d2 | 0.5 | 0.25 |
塔板间距/m | ||
h1 | 0.6 | 0.8 |
h2 | 0.4 | 0.2 |
再沸器热负荷/kW | ||
QR1 | 2882.54(差异31.48%①) | 4206.67 |
QR2 | 278.65 | 99.27 |
总再沸器热负荷QR/kW | 3161.19(差异26.59%②) | 4305.94 |
冷凝器热负荷QC/kW | -2502.16 | -3828.01 |
FCI/kUSD·a-1 | 1032.86 | 1275.04 |
OC/kUSD·a-1 | 1237.21 | 1686.71 |
TAC/kUSD·a-1 | 1547.07(差异25.23%③) | 2069.22 |
参数 | 两塔-侧线分相器流程 | 常规三塔粗分流程 | ||||
---|---|---|---|---|---|---|
侧线精馏塔 | 重醇塔 | 脱水塔 | 醇分塔 | 重醇塔 | ||
p/kPa | 101.3 | 121.3 | 101.3 | 121.3 | ||
NT | 62 | 14 | 47 | 51 | 8 | |
NF | 25 | 1 | 10 | 29 | 1 | |
RR | 6.13 | — | 1.61 | 1.69 | — | |
d/m | 1.1 | 0.5 | 1.0 | 0.7 | 0.25 | |
h/m | 0.6 | 0.4 | 0.6 | 0.4 | 0.2 | |
QC/kW | -2224.74 | -272.31 | -2111.65 | -840.84 | -80.20 | |
QR/kW | 2571.21 | 291.39 | 2446.14 | 858.11 | 101.95 | |
合计QR/kW | 2862.60(差异15.96%①) | 3406.20 | ||||
FCI/kUSD·a-1 | 1016.67 | 1136.08 | ||||
OC/kUSD·a-1 | 1120.30 | 1333.67 | ||||
TAC/kUSD·a-1 | 1456.40(差异14.79%②) | 1709.25 |
表5 两塔-侧线分相器和常规三塔粗分流程比较
参数 | 两塔-侧线分相器流程 | 常规三塔粗分流程 | ||||
---|---|---|---|---|---|---|
侧线精馏塔 | 重醇塔 | 脱水塔 | 醇分塔 | 重醇塔 | ||
p/kPa | 101.3 | 121.3 | 101.3 | 121.3 | ||
NT | 62 | 14 | 47 | 51 | 8 | |
NF | 25 | 1 | 10 | 29 | 1 | |
RR | 6.13 | — | 1.61 | 1.69 | — | |
d/m | 1.1 | 0.5 | 1.0 | 0.7 | 0.25 | |
h/m | 0.6 | 0.4 | 0.6 | 0.4 | 0.2 | |
QC/kW | -2224.74 | -272.31 | -2111.65 | -840.84 | -80.20 | |
QR/kW | 2571.21 | 291.39 | 2446.14 | 858.11 | 101.95 | |
合计QR/kW | 2862.60(差异15.96%①) | 3406.20 | ||||
FCI/kUSD·a-1 | 1016.67 | 1136.08 | ||||
OC/kUSD·a-1 | 1120.30 | 1333.67 | ||||
TAC/kUSD·a-1 | 1456.40(差异14.79%②) | 1709.25 |
项目 | 控制变量 | 操纵变量 | 增益/Kc | 积分时间τI/min |
---|---|---|---|---|
CC1 | xD1(丁醇) | 回流比(侧线精馏塔) | 0.10 | 40.92 |
CC2 | xB1(水) | 再沸器热负荷(侧线精馏塔) | 0.20 | 77.88 |
T4 | xB1(丙醇) | 再沸器热负荷(重醇塔) | 0.35 | 10.56 |
表6 控制器调谐参数
项目 | 控制变量 | 操纵变量 | 增益/Kc | 积分时间τI/min |
---|---|---|---|---|
CC1 | xD1(丁醇) | 回流比(侧线精馏塔) | 0.10 | 40.92 |
CC2 | xB1(水) | 再沸器热负荷(侧线精馏塔) | 0.20 | 77.88 |
T4 | xB1(丙醇) | 再沸器热负荷(重醇塔) | 0.35 | 10.56 |
1 | LARSON E D, REN T J. Synthetic fuel production by indirect coal liquefaction[J]. Energy for Sustainable Development, 2003, 7(4): 79-102. |
2 | LIU Z Y, SHI S D, LI Y W. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chemical Engineering Science, 2010, 65(1): 12-17. |
3 | KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical Reviews, 2007, 107(5): 1692-1744. |
4 | DRY M E. The fischer-tropsch process: 1950—2000[J]. Catalysis Today, 2002, 71(3/4): 227-241. |
5 | DÜRRE P. Biobutanol: an attractive biofuel[J]. Biotechnology Journal: Healthcare Nutrition Technology, 2007, 2(12): 1525-1534. |
6 | MOSER W R, CONNOLLY K E. Synthesis and characterization of copper-modified zinc chromites by the high temperature aerosol decomposition process for higher alcohol synthesis[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 64(2). |
7 | MAHDAVI V, PEYROVI M H. Synthesis of C1-C6 alcohols over copper/cobalt catalysts: investigation of the influence of preparative procedures on the activity and selectivity of Cu-Co2O3/ZnO, Al2O3 catalyst[J]. Catalysis Communications, 2006, 7(8): 542-549. |
8 | 马爱华, 云志. 费托合成水相副产物中具有共沸组成的低碳混合醇-水体系分离方法的研究进展[J]. 石油学报(石油加工), 2013, 29(4): 738-743. |
MA A H, YUN Z. Research progress of separation technologies for azeotropic mixture of lower alcohols-water system of the by-product in water of fischer-Tropsch synthesis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(4): 738-743. | |
9 | SIE S T. Process development and scale up: Ⅳ. Case history of the development of a Fischer-Tropsch synthesis process[J]. Reviews in Chemical Engineering, 1998, 14(2): 109-157. |
10 | 李云华. 费托合成水相副产物馏分切割工艺的技术开发[D]. 天津: 天津大学, 2003. |
LI Y H. Technology exploitation of cutting the by-product in water of Fischer-Tropsch synthesis[D]. Tianjin: Tianjin University, 2003. | |
11 | 汪俊锋, 王红星, 杨金杯, 等. 费托合成水相副产物混合醇分离脱水工艺模拟及优化[J]. 计算机与应用化学, 2015, 32(5): 567-571. |
WANG J F, WANG H X, YANG J B, et al. F-T of mixed alcohol aqueous by-product separation dehydration technology simulation and optimization[J]. Computers and Applied Chemistry, 2015, 32(5): 567-571. | |
12 | 李玲, 柴士阳, 刘来春, 等. 费托合成水相副产物混合醇渗透蒸发分离工艺[J]. 化工进展, 2017, 36(6): 2086-2093. |
LI L, CHAI S Y, LIU L C, et al. Study on separation of mixed alcohol from water phase by-product in the F-T synthesis by pervaporation technology[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2086-2093. | |
13 | GARCIA M, SANZ M T, BELTRAN S. Separation by pervaporation of ethanol from aqueous solutions and effect of other components present in fermentation broths[J]. Journal of Chemical Technology & Biotechnology, 2009, 84(12): 1873-1882. |
14 | ARIFIN S, CHIEN I L. Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 790-803. |
15 | LUYBEN W L. Economic optimum design of the heterogeneous azeotropic dehydration of ethanol[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16427-16432. |
16 | MILESTONE N B, BIBBY D M. Concentration of alcohols by adsorption on silicalite[J]. Journal of Chemical Technology & Biotechnology, 2010, 31(1): 732-736. |
17 | 胡子益, 李洪波, 谭宇鑫, 等. 分子筛膜-精馏耦合用于费托合成水相副产物混合醇回收的工艺流程模拟[J]. 化工进展, 2016, 35(S2): 56-60. |
HU Z Y, LI H B, TANG Y X, et al. Zeolite membrane dehydration and distillation coupling process simulation of F-T water by-product recovery[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 56-60. | |
18 | CUI C T, ZHANG X D, SUN J S. Design and optimization of energy-efficient liquid-only side-stream distillation configurations using a stochastic algorithm[J]. Chemical Engineering Research and Design, 2019, 145: 48-52. |
19 | SMITH R. Chemical process: design and integration[M]. State of New Jersey: John Wiley & Sons, 2005. |
20 | ROOKS R E, MALONE M F, DOHERTY M F. A geometric design method for side-stream distillation columns[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3653-3664. |
21 | TEDDER D W, RUDD D F. Parametric studies in industrial distillation: Part Ⅰ. Design comparisons[J]. AIChE Journal, 1978, 24(2): 303-315. |
22 | GLINOS K N, MALONE M F. Design of sidestream distillation columns[J]. Industrial & Engineering Chemistry Process Design and Development, 1985, 24(3): 822-828. |
23 | FERREIRA M C, MEIRELLES A J A, BATISTA E A C. Study of the fusel oil distillation process[J]. Industrial & Engineering Chemistry Research, 2013, 52(6): 2336-2351. |
24 | PUENTES C, JOULIA X, ATHÈS V, et al. Review and thermodynamic modeling with NRTL model of vapor-liquid equilibria (VLE) of aroma compounds highly diluted in ethanol-water mixtures at 101.3kPa[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3443-3470. |
25 | IWAKABE K, KOSUGE H. Isobaric vapor-liquid-liquid equilibria with a newly developed still[J]. Fluid Phase Equilibria, 2001, 192(1/2): 171-186. |
26 | 任冉冉. 费托合成水中醇分离过程的热力学模型评价[D]. 北京: 北京石油化工学院, 2016. |
REN R R. Evaluation of thermodynamic model for alcohol separation process of Fischer-Tropsch synthesis water[D]. Beijing: Beijing Institute of Petrochemical Technology, 2016. | |
27 | ORCHILLÉS A V, VERCHER E, MARTÍNEZ-ANDREU A, et al. Isobaric vapor-liquid equilibria for 1-propanol + water + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100kPa[J]. Journal of Chemical & Engineering Data, 2008, 53(10): 2426-2431. |
28 | KAMIHAMA N, MATSUDA H, KURIHARA K, et al. Isobaric vapor-liquid equilibria for ethanol + water + ethylene glycol and its constituent three binary systems[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 339-344. |
29 | IWAKABE K, KOSUGE H. Isobaric vapor-liquid-liquid equilibria with a newly developed still[J]. Fluid Phase Equilibria, 2001, 192(1/2): 171-186. |
30 | 程能林. 溶剂手册[M]. 4版. 北京: 化学工业出版社, 2007: 405-439. |
CHENG N L. Solvents Handbook[M]. 4th ed. Beijing: Chemical Industry Press, 2007: 405-439. | |
31 | STEPHENSON R, STUART J, TABAK M. Mutual solubility of water and aliphatic alcohols[J]. Journal of Chemical and Engineering Data, 1984, 29(3): 287-290. |
32 | GMEHLING J, MENKE J, KRAFCZYK J, et al. Azeotropic data[M]. Weinheim: Wiley-VCH, 2004. |
33 | DOUGLAS J M. Conceptual design of chemical processes[M]. New York: McGraw-Hill, 1988. |
34 | WEI F, DIAO B T, GAO J, et al. Process design, evaluation and control for separation of 2, 2, 3, 3‐tetrafluoro‐1‐propanol and water by extractive distillation using ionic liquid 1‐ethyl‐3‐methylimidazolium acetate[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(11): 3175-3184. |
35 | FIEN G J A F, LIU Y A. Heuristic synthesis and shortcut design of separation processes using residue curve maps: a review[J]. Industrial & Engineering Chemistry Research, 1994, 33(11): 2505-2522. |
36 | BARBOSA D, DOHERTY M F. The simple distillation of homogeneous reactive mixtures[J]. Chemical Engineering Science, 1988, 43(3): 541-550. |
37 | WALPOT H E. Theoretical modeling of residue curve maps for a reactive distillation concept for the production of n-propyl propionate[D]. Vancouver: the University of British Columbia, 2011. |
38 | LUYBEN W L. Distillation design and control using Aspen simulation[M]. New York: John Wiley & Sons Inc., 2013. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[5] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[9] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[10] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[11] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[12] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[13] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[14] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[15] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |