化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5188-5199.DOI: 10.16085/j.issn.1000-6613.2022-0799
收稿日期:
2022-05-05
修回日期:
2022-06-12
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
胡大鹏
作者简介:
朱明军(1988—),男,博士,研究方向为多相流分离技术。E-mail:zhumj07420418@163.com。
基金资助:
ZHU Mingjun1,2(), HU Dapeng2()
Received:
2022-05-05
Revised:
2022-06-12
Online:
2022-10-20
Published:
2022-10-21
Contact:
HU Dapeng
摘要:
首先提出一种新型可调溢流堰板式三相卧螺离心机主体结构,其内部设置了径向排油通道以及位置和大小可调节的溢流堰板。其次,使用计算流体力学软件Fluent、基于欧拉-欧拉多相流模型,对三相卧螺离心机流场及分离性能进行数值模拟,建立三维流域模型、进行网格划分及边界条件设定,对油相及固相浓度分布等进行分析。之后确定实验工艺流程图,搭建油水砂三相分离实验系统平台,建立三相分离实验系统装置,制定实验步骤进行实验研究及测量工作。分别从转鼓转速、处理量等研究了各自对固相回收率、油相回收率、油在滤饼中的损失及油在水中的损失等的影响规律,并从出砂含固、出油含油、出渣含油及出水含油质量浓度等方面对数值模拟结果进行实验验证。
中图分类号:
朱明军, 胡大鹏. 操作参数对三相卧螺离心机油水砂分离性能影响模拟及实验分析[J]. 化工进展, 2022, 41(10): 5188-5199.
ZHU Mingjun, HU Dapeng. Simulation and experimental analysis of the influence of operating parameters on oil-water-sand separation performance of three-phase decanter centrifuge[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5188-5199.
名称 | 数值 | 名称 | 数值 |
---|---|---|---|
转鼓柱段外径D/mm | 360 | 螺旋内筒(芯管)柱段直径d1/mm | 200 |
转鼓柱段长度L1/mm | 1107 | 溢流挡油板内径d2/mm | 260 |
转鼓锥段长度L2/mm | 513 | BD挡油板外径d3/mm | 320 |
最大液池深度h1/mm | 45 | 进料管直径df/mm | 45 |
螺旋叶片高度h2/mm | 78 | 螺旋导程S/mm | 70 |
转鼓长径比 | 4.5∶1 | 转鼓半锥角α/(°) | 7 |
表1 新型可调溢流堰板式三相卧螺离心机几何模型基本尺寸
名称 | 数值 | 名称 | 数值 |
---|---|---|---|
转鼓柱段外径D/mm | 360 | 螺旋内筒(芯管)柱段直径d1/mm | 200 |
转鼓柱段长度L1/mm | 1107 | 溢流挡油板内径d2/mm | 260 |
转鼓锥段长度L2/mm | 513 | BD挡油板外径d3/mm | 320 |
最大液池深度h1/mm | 45 | 进料管直径df/mm | 45 |
螺旋叶片高度h2/mm | 78 | 螺旋导程S/mm | 70 |
转鼓长径比 | 4.5∶1 | 转鼓半锥角α/(°) | 7 |
序号 | 转鼓转速 /r·min-1 | 出油体积流率 /m3·h-1 | 出水(滤清液)体积流率/m3·h-1 | 出渣(滤饼)质量 流率/kg·h-1 | 出砂含固质量 分数/% | 出油含油质量 分数/% | 出渣含油质量 分数/% | 出水含油质量 分数/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
实验值 | 模拟值 | 实验值 | 模拟值 | 实验值 | 模拟值 | 实验值 | 模拟值 | |||||
① | 400 | 0.85 | 2.3 | 725 | 62 | 67 | 75 | 72 | 6.1 | 7.6 | 11 | 16 |
② | 1000 | 0.89 | 2.1 | 739.5 | 65 | 68 | 78 | 79 | 5.3 | 7.5 | 9 | 14 |
③ | 1400 | 0.94 | 2.2 | 1032.7 | 64 | 68 | 76 | 80 | 5.6 | 6.8 | 8 | 13 |
④ | 1800 | 0.95 | 2.2 | 1138.6 | 68 | 70 | 77 | 82 | 4.6 | 6.3 | 7 | 11 |
⑤ | 2200 | 1.03 | 2.4 | 1242.3 | 74 | 82 | 78 | 83 | 4.4 | 6.2 | 9 | 11 |
⑥ | 2800 | 1.23 | 2.7 | 1143.5 | 78 | 85 | 83 | 86 | 4.1 | 5.8 | 9 | 9 |
⑦ | 3400 | 1.3 | 2.6 | 1347.6 | 82 | 86 | 79 | 87 | 3.8 | 5.3 | 5 | 8 |
表2 改变转鼓转速实验数据测量及各浓度计算数据表
序号 | 转鼓转速 /r·min-1 | 出油体积流率 /m3·h-1 | 出水(滤清液)体积流率/m3·h-1 | 出渣(滤饼)质量 流率/kg·h-1 | 出砂含固质量 分数/% | 出油含油质量 分数/% | 出渣含油质量 分数/% | 出水含油质量 分数/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
实验值 | 模拟值 | 实验值 | 模拟值 | 实验值 | 模拟值 | 实验值 | 模拟值 | |||||
① | 400 | 0.85 | 2.3 | 725 | 62 | 67 | 75 | 72 | 6.1 | 7.6 | 11 | 16 |
② | 1000 | 0.89 | 2.1 | 739.5 | 65 | 68 | 78 | 79 | 5.3 | 7.5 | 9 | 14 |
③ | 1400 | 0.94 | 2.2 | 1032.7 | 64 | 68 | 76 | 80 | 5.6 | 6.8 | 8 | 13 |
④ | 1800 | 0.95 | 2.2 | 1138.6 | 68 | 70 | 77 | 82 | 4.6 | 6.3 | 7 | 11 |
⑤ | 2200 | 1.03 | 2.4 | 1242.3 | 74 | 82 | 78 | 83 | 4.4 | 6.2 | 9 | 11 |
⑥ | 2800 | 1.23 | 2.7 | 1143.5 | 78 | 85 | 83 | 86 | 4.1 | 5.8 | 9 | 9 |
⑦ | 3400 | 1.3 | 2.6 | 1347.6 | 82 | 86 | 79 | 87 | 3.8 | 5.3 | 5 | 8 |
1 | 牛克胜, 王方辉, 蒋延梅. 国产卧螺离心机在污泥脱水中的应用[J]. 给水排水, 2004, 30(8): 92-94. |
NIU Kesheng, WANG Fanghui, JIANG Yanmei. Application of domestic decanter centrifuge in sludge dewatering[J]. Water & Wastewater Engineering, 2004, 30(8): 92-94. | |
2 | 唐妹, 俞利楠. 三相卧螺离心机在罐底油泥清洗工艺中的应用[J]. 江西化工, 2020, 2(2): 62-64. |
TANG Mei, YU Linan. The application of the three-phase decanter in tank bottom sludge cleaning process[J]. Jiangxi Chemical Industry, 2020, 2(2): 62-64. | |
3 | RAHMAT S, KUSIN F M, JOHARI W L W. Performance assessment of centrifuge dewatering unit using multivariate statistical approach: a case study of a centralized sludge treatment facility (CSTF) in Malacca, Malaysia[J]. Desalination & Water Treatment, 2016, 57(9): 3904-3915. |
4 | 李文英, 李阳, 马艳飞, 等. 含油污泥资源化处理方法进展[J]. 化工进展, 2020, 39(10): 4191-4199. |
LI Wenying, LI Yang, MA Yanfei, et. Progress of resource treatment methods for oily sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4191-4199. | |
5 | 李君, 罗亚田, 丁飒. 国内外含油污泥的处理现状分析[J]. 能源环境保护, 2007, 21(5): 12-14. |
LI Jun, LUO Yatian, DING Sa. Analysis of the current situation of oily sludge treatment at home and abroad[J]. Energy Environmental Protection, 2007, 21(5): 12-14. | |
6 | 张珂,朱建华,周勇,等. 含油污泥的废油置换脱水特性[J].化工学报,2013, 64(9): 3396-3403. |
ZHANG Ke, ZHU Jianhua, ZHOU Yong, et al. Fry-drying of oily sludge via spent lubricating oil of vehicle[J]. CIESC Journal, 2013, 64(9): 3396-3403. | |
7 | 余宏翔. 工业远程物联网技术在卧螺离心机控制系统中的应用[J]. 上海化工, 2022, 47(1): 34-37. |
YU Hongxiang. Application of industrial remote internet of things technology in decanter centrifuge control system[J]. Shanghai Chemical Industry, 2022, 47(1): 34-37. | |
8 | 贾敏, 张麦奎, 张旭, 等. 油性污泥三相分离试验研究[J]. 工业用水与废水, 2017, 48(3): 83-86. |
JIA Min, ZHANG Maikui, ZHANG Xu, et al. Experimental study on three-phase separation of oily sludge[J]. Industrial Water and Wastewater, 2017, 48(3): 83-86. | |
9 | ELKACMI R, KAMIL N, BENNAJAH M. Separation and purification of high purity products from three different olive mill wastewater samples[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 829-837. |
10 | KLEN T J, VODOPIVEC B M. The fate of olive fruit phenols during commercial olive oil processing: traditional press versus continuous two- and three- phase centrifuge[J]. LWT—Food Science and Technology, 2012, 49(2): 267-274. |
11 | 张逢玉, 姜安玺, 吕阳. 油田采出水处理技术与发展趋势研究[J]. 环境科学与管理, 2007, 32(10): 65-68. |
ZHANG Fengyu, JIANG Anxi, Yang LYU. Research on oilfield produced water treatment technology and development trend[J]. Environmental Science and Management, 2007, 32(10): 65-68. | |
12 | 何焕杰, 王中华, 王永红, 等. 国内油田三次采油聚合物驱采出液处理技术研究进展[J]. 石油炼制与化工, 2002, 33(9): 29-32. |
HE Huanjie, WANG Zhonghua, WANG Yonghong, et al. Research progress of polymer flooding produced fluid treatment technology for tertiary oil recovery in domestic oilfields[J]. Petroleum Refining and Chemical Industry, 2002, 33(9): 29-32. | |
13 | 袁鹏, 郑猛, 王浩, 等. 一种三相卧螺离心机: CN103143453B[P]. 2015-11-18. |
YUAN Peng, ZHENG Meng, WANG Hao, et al. A three-phase decanter centrifuge: CN103143453B[P]. 2015-11-18. | |
14 | 谭蔚, 钟伟良, 闫浩, 等. 卧式螺旋卸料离心机研究的回顾与展望[J]. 化工进展, 2016, 35 (S2): 46-50. |
TAN Wei, ZHONG Weiliang, YAN Hao, et al. Review and prospect on the research of horizontal screw discharging centrifuge[J]. Chemical Industry and Engineering Progress, 2016, 35 (S2): 46-50. | |
15 | 李强. 三相离心机在餐厨垃圾分离行业中的应用[J]. 过滤与分离, 2017, 27(3): 34-36. |
LI Qiang. Application of three phase centrifuge in kitchen waste separation industry[J]. Filtration and Separation, 2017, 27(3): 34-36. | |
16 | GUERRINI L, MASELLA P, ANGELONI G, et al. Changes in olive paste composition during decanter feeding and effects on oil yield[J]. European Journal of Lipid Science & Technology, 2017. |
17 | MOLLER H B, SOMMER S G, AHRING B K. Separation efficiency and particle size distribution in relation to manure type and storage conditions[J]. Bioresource Technology, 2002, 85(2): 189-196. |
18 | FUNES E, ALLOUCHE Y, BELTRAN G, et al. Predictive ANN models for the optimization of extra virgin olive oil clarification by means of vertical centrifugation[J]. Journal of Food Process Engineering, 2017: e12593. |
19 | 姜杰, 温冬, 肖泽仪. 三相卧螺离心机油水分离的CFD分析[J]. 流体机械, 2017, 45(6): 26-31. |
JIANG Jie, WEN Dong, XIAO Zeyi. CFD analysis of oil-water separation in three-phase decanter centrifuge[J]. Fluid Machinery, 2017, 45(6): 26-31. | |
20 | MILLER N J. Three stage centrifuge and method for separating water and solids from petroleum products: US05156751A[P]. 1992-10-20. |
21 | 陈杰, 梅连春. 一种卧式螺旋沉降三相分离离心机: CN103586142A[P]. 2014-02-19. |
CHEN Jie, MEI Lianchun. A horizontal spiral sedimentation three-phase separation centrifuge: CN103586142A[P]. 2014-02-19. | |
22 | SSTICKLAND A D, WHITE L R, SCALES P J. Modeling of solid-bowl batch centrifugation of flocculated suspensions[J]. AIChE Journal, 2010, 52. |
23 | OHINATA T, MIZUKAMI H, SUZUKI N, et al. Decanter type centrifugal separator with restriction effected discharge route: US6780148 B2[P]. 2004-08-24. |
24 | 窦茂卫, 苏保卫, 高学理, 等. 油田采出水膜法处理技术应用研究进展[J]. 环境科学与技术, 2011, 34(8): 124-130. |
DOU Maowei, SU Baowei, GAO Xueli, et al. Progress in membrane technology for treatment of oilfield produced water[J]. Environmental Science & Technology, 2011, 34(8): 124-130. | |
25 | BAI C Z, PARK H G, WANG L G. Modelling solid-liquid separation and particle size classification in decanter centrifuges[J]. Separation and Purification Technology, 2021, 263: 118408-1-118408-14. |
26 | ALESSANDRO L, ROBERTO R, RICCARDO Z, et al. Mathematical modelling of the performance parameters of a new decanter centrifuge generation[J]. Journal of Food Engineering, 2015, 166: 10-20. |
27 | ZHU G R, TAN W, YU Y, et al. Experimental and numerical study of the solid concentration distribution in a horizontal screw decanter centrifuge[J]. Industrial & Engineering Chemistry Research, 2013, 52(48): 17249-17256. |
28 | GONG H, YU B, ZHANG X, et al. Structural optimization of a demulsification and dewatering device coupled with swirl centrifugal and high-voltage fields by response surface methodology combined with numerical simulation[J]. Chemical Engineering Research and Design, 2019, 148: 361-374. |
29 | LEUNG, WOON-FONG W. Inferring in-situ floc size, predicting solids recovery, and scaling-up using the Leung number in separating flocculated suspension in decanter centrifuges[J]. Separation and Purification Technology, 2016, 171: 69-79. |
30 | RAZIYEH S, ATAALLAH S G, ENGINEERING D, et al. CFD simulation of an industrial hydrocyclone with Eulerian-Eulerian approach: a case study[J]. International Journal of Mining Science and Technology, 2014(5): 643-648. |
31 | 朱桂华, 张傲林, 彭南辉, 等. 卧螺离心机内盐析流场的CFD-PBM耦合计算[J]. 化工进展, 2019, 38(9): 3947-3955. |
ZHU Guihua, ZHANG Aolin, PENG Nanhui, et al. CFD-PBM coupling calculation of salting-out flow field in a decanter centrifuge[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3947-3955. | |
32 | MENESKLOU P, NIRSCHL H, GLEISS M. Dewatering of finely dispersed calcium carbonate-water slurries in decanter centrifuges: about modelling of a dynamic simulation tool[J]. Separation and Purification Technology, 2020, 251: 117287. |
33 | 徐保蕊, 蒋明虎, 赵立新, 等. 螺旋分离器水流动特性的CDF模拟与PIV试验[J]. 石油学报, 2018, 39(2): 223-231. |
XU Baorui, JIANG Minghu, ZHAO Lixin, et al. CDF simulation and PIV test of water flow characteristics in a spiral separator[J]. Acta Petrolei Sinica, 2018, 39(2): 223-231. | |
34 | RECORDS A, SUTHERLAND K. Decanter centrifuge handbook[M]. Oxford: Elsevier Science, 2001: 189. |
35 | 朱桂华, 张傲林, 彭南辉, 等. 卧螺离心机用于盐泥固液分离时转鼓转速对流场特性的影响[J]. 化工进展, 2019, 38(6): 2590-2599. |
ZHU Guihua, ZHANG Aolin, PENG Nanhui, et al. Effect of drum rotation speed on flow field characteristics when decanter centrifuge is used for solid-liquid separation of salt mud[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2590-2599. | |
36 | 钟伟良, 谭蔚, 李振威, 等. 基于流固耦合的大型卧螺离心机数值模拟及实验研究[J]. 化学工业与工程, 2018, 35(2): 62-69. |
ZHONG Weiliang, TAN Wei, LI Zhenwei, et al. Numerical simulation and vibration test analysis of large-scale decanter centrifuge base on fluid-structure interaction[J]. Chemical Industry and Engineering, 2018, 35(2): 62-69. | |
37 | ZHANG H, ZHAI L, LIU R, et al. Prediction of curved oil-water interface in horizontal pipes using modified model with dynamic contact angle[J]. Chinese Journal of Chemical Engineering, 2020(3): 14. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[4] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[5] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[6] | 宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 基于入口分散相重排序的旋流强化分离研究进展[J]. 化工进展, 2023, 42(5): 2219-2232. |
[7] | 田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687. |
[8] | 乔元, 仇畅, 钱锦远, 干瑞彬, 徐春明, 金志江. 笼式调节阀的冲蚀磨损与空蚀[J]. 化工进展, 2023, 42(10): 5111-5120. |
[9] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[10] | 彭德其, 冯源, 王依然, 谭卓伟, 俞天兰, 吴淑英. 立式缩放管内液固颗粒群浓度分布与汇聚特性[J]. 化工进展, 2022, 41(9): 4662-4672. |
[11] | 古新, 张前欣, 王超鹏, 方运阁, 李宁, 王永庆. U形导流板换热器传热和阻力性能分析[J]. 化工进展, 2022, 41(7): 3465-3474. |
[12] | 徐涵卓, 刘志浩, 孙宝昌, 张亮亮, 邹海魁, 罗勇, 初广文. 流体驱动旋转装备应用与数值模拟方法研究进展[J]. 化工进展, 2022, 41(6): 2806-2817. |
[13] | 陈龙, 李霞霞, 李伟祥, 戚锐, 邓鑫, 吴斌鑫. 聚丙烯非织造布熔喷过程的计算流体力学模拟研究进展[J]. 化工进展, 2022, 41(2): 537-553. |
[14] | 林伟翔, 苏港川, 陈强, 文键, AKRAPHON Janon, 王斯民. 沉浸式换热器超声强化传热影响因素[J]. 化工进展, 2022, 41(1): 40-51. |
[15] | 王戈, 孙志伟, 谭蔚, 邱威, 朱国瑞. 异形纤维阵列过滤特性的数值模拟[J]. 化工进展, 2022, 41(1): 30-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |