化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5306-5315.DOI: 10.16085/j.issn.1000-6613.2021-2511
谢腾1,2(), 赵立欣1,2, 姚宗路1,2, 霍丽丽1,2(), 贾吉秀1,2, 张沛祯1,2, 田利伟1,2, 傅国浩1,2
收稿日期:
2021-12-08
修回日期:
2022-02-17
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
霍丽丽
作者简介:
谢腾(1995—),博士研究生,研究方向为农业废弃物热化学转化技术。E-mail:1436054679@qq.com。
基金资助:
XIE Teng1,2(), ZHAO Lixin1,2, YAO Zonglu1,2, HUO Lili1,2(), JIA Jixiu1,2, ZHANG Peizhen1,2, TIAN Liwei1,2, FU Guohao1,2
Received:
2021-12-08
Revised:
2022-02-17
Online:
2022-10-20
Published:
2022-10-21
Contact:
HUO Lili
摘要:
共热解技术是将多种原料通过热化学方法转化为清洁能源的重要手段。本文综述了以农业生物质为主要原料与塑料(聚丙烯PP、高密度聚乙烯HDPE、低密度聚乙烯LDPE、聚氯乙烯PVC、聚苯乙烯PS、聚对苯二甲酸乙二醇酯PET等)共热解技术的发展现状和研究进展。分析农业生物质与塑料共热解的动力学模型以及各组分之间的协同效应,阐述农业生物质与塑料的共热解机理;总结了温度、升温速率、滞留时间、原料混配比等因素对共热解协同作用的影响规律;探究生物质与塑料共热解固、液、气三相产物特性及分布规律,总结共热解技术优势及存在问题,展望未来发展方向,可为生物质与塑料共热解制备高附加值产品提供参考,同时也为农业生物质和农膜处理问题提供新方法、新思路。
中图分类号:
谢腾, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 张沛祯, 田利伟, 傅国浩. 农业生物质与塑料共热解技术进展[J]. 化工进展, 2022, 41(10): 5306-5315.
XIE Teng, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, ZHANG Peizhen, TIAN Liwei, FU Guohao. Progress in co-pyrolysis technology of agricultural biomass and plastics[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5306-5315.
原料 | 活化能E/kJ·mol-1 | 指前因子A/min-1 | 参考文献 |
---|---|---|---|
纤维素 | 127~157.32 | 7.89×1012 | [ |
棉花秸秆 | 38.9~79.48 | 1.26×104~6.63×109 | [ |
小麦秸秆 | 44.9~250.6 | — | [ |
木屑 | 97.9(Em) | 4.5×107 | [ |
玉米秸秆 | 26.13~177.3 | 2.39×105~2.76×107 | [ |
PP | 100.43~294.62 | 6.88×1015 | [ |
PVC | 108.12~246.78 | 8.3×108~1.8×1023 | [ |
PS | 273.74 | 3.42×1020 | [ |
HDPE | 212.8~302.81 | 1.14×1014~5.29×1020 | [ |
LDPE | 213.78~306.6 | 3.95×1014~2.59×1019 | [ |
棉花秸秆/PVC=1/1 | 51.08~190.13 | 6.13×107~1.75×1013 | [ |
纤维素/LDPE=1/1 | 134.59 | 5.3×107 | [ |
纤维素/LDPE=1/1(催化) | 89.51 | 6.73×105 | [ |
木屑/LDPE=1/1 | 250~380℃时116.5~132.9; 380~480℃时143.7~202.2; 480~530℃时293.6~486.8 | 5.5×108; 5.3×1021; 5.5×1027 | [ |
玉米秸秆/HDPE=4/1 | 170.7(Em) | — | [ |
玉米秸秆/HDPE=3/2 | 208.1(Em) | — | |
玉米秸秆/HDPE=2/3 | 211.5(Em) | — | |
玉米秸秆/HDPE=1/4 | 220.3(Em) | — | |
玉米秸秆/HDPE=1/1 | 98.35~392.67 | 3.26×104~9.19×1023 |
表1 不同原料热解/共热解活化能和指前因子对照
原料 | 活化能E/kJ·mol-1 | 指前因子A/min-1 | 参考文献 |
---|---|---|---|
纤维素 | 127~157.32 | 7.89×1012 | [ |
棉花秸秆 | 38.9~79.48 | 1.26×104~6.63×109 | [ |
小麦秸秆 | 44.9~250.6 | — | [ |
木屑 | 97.9(Em) | 4.5×107 | [ |
玉米秸秆 | 26.13~177.3 | 2.39×105~2.76×107 | [ |
PP | 100.43~294.62 | 6.88×1015 | [ |
PVC | 108.12~246.78 | 8.3×108~1.8×1023 | [ |
PS | 273.74 | 3.42×1020 | [ |
HDPE | 212.8~302.81 | 1.14×1014~5.29×1020 | [ |
LDPE | 213.78~306.6 | 3.95×1014~2.59×1019 | [ |
棉花秸秆/PVC=1/1 | 51.08~190.13 | 6.13×107~1.75×1013 | [ |
纤维素/LDPE=1/1 | 134.59 | 5.3×107 | [ |
纤维素/LDPE=1/1(催化) | 89.51 | 6.73×105 | [ |
木屑/LDPE=1/1 | 250~380℃时116.5~132.9; 380~480℃时143.7~202.2; 480~530℃时293.6~486.8 | 5.5×108; 5.3×1021; 5.5×1027 | [ |
玉米秸秆/HDPE=4/1 | 170.7(Em) | — | [ |
玉米秸秆/HDPE=3/2 | 208.1(Em) | — | |
玉米秸秆/HDPE=2/3 | 211.5(Em) | — | |
玉米秸秆/HDPE=1/4 | 220.3(Em) | — | |
玉米秸秆/HDPE=1/1 | 98.35~392.67 | 3.26×104~9.19×1023 |
原料 | 试验条件 | 质量混配比 | 固态产物 | 液态产物(A+T) | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
产率/% | 热值/MJ·kg-1 | 产率/% | 热值/MJ·kg-1 | |||||
纤维素/LDPE | 竖式固定床:10℃∙min-1;550℃;30min;N2;外管道保温140~160℃ | 1∶0 | 22.0 | 33.9 | 33.0+9 | 17.8 | [ | |
纤维素/LDPE | 0∶1 | — | 70.0 | 46.3 | ||||
纤维素/LDPE | 1∶1 | 8.0 | 34.8 | 66 | 37.8 | |||
木屑/PS | 固定床:10℃∙min-1;500℃;N2 | 1∶0 | 31.3 | — | 48.8 | 17.8 | [ | |
木屑/PS | 0∶1 | 4.9 | — | 77.8 | 41.7 | |||
木屑/PS | 1∶3 | 39.2 | 39.7 | |||||
棕榈壳/HDPE | 固定床:5℃∙min-1;550℃;30min;N2 | 1∶0 | 28.2 | — | 21.1+18.0 | [ | ||
棕榈壳/HDPE | 0∶1 | 56 | ||||||
棕榈壳/HDPE | 1∶2 | 9.3 | 50.9+15.4 | |||||
棕榈壳/HDPE | 1∶1 | 15.6 | 41.4+10.0 | |||||
棕榈壳/HDPE | 2∶1 | 20.0 | 37.9+13.9 | |||||
核桃壳/PET | 固定床:10℃∙min-1;500℃;30min;N2 | 1∶1 | 25.9 | 32.0 | 28.9 | 25.1 | [ | |
核桃壳/PVC | 1∶1 | 20.0 | 31.3 | 17.6(T) | 40.5 | |||
核桃壳/PS | 1∶1 | 27.1 | 44.8 | 31.5 | ||||
核桃壳 | 30.6 | 28.9 | 20.8 | 24.4 | ||||
废报纸/HDPE | 固定床:10℃∙min-1;500℃;N2 | 1∶2 | 8.0 | 54.7+13.8 | [ | |||
废报纸/HDPE | 1∶1 | 14.5 | 55.5 | 26.8~34.8 | ||||
废报纸/HDPE | 2∶1 | 16.5 | 52.0 | |||||
废报纸/HDPE | 1∶0 | 29.8 | — | 40.5 | 17.0 | |||
废报纸/HDPE | 0∶1 | 1.0 | — | 52.8 | 43.8 | |||
棕榈壳/PS | 固定床:10℃∙min-1;600℃,60min;N2 2L·min-1 | 1∶1 | 61.6 | 38.0 | [ | |||
棕榈壳/PS | 4∶1 | 27.8 | 47.7 | |||||
棕榈壳/PS | 7∶3 | 23.2 | 49.9 | |||||
棕榈壳/PS | 3∶2 | 20.2 | 59.1 | |||||
棕榈壳/PS | 1∶0 | 31.7 | — | 46.1 | 11.9 | |||
棕榈壳/PS | 固定床:600℃,45min | 2∶3 | 68.3 | 40.3 | [ |
表2 生物质与塑料共热解产物分析
原料 | 试验条件 | 质量混配比 | 固态产物 | 液态产物(A+T) | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
产率/% | 热值/MJ·kg-1 | 产率/% | 热值/MJ·kg-1 | |||||
纤维素/LDPE | 竖式固定床:10℃∙min-1;550℃;30min;N2;外管道保温140~160℃ | 1∶0 | 22.0 | 33.9 | 33.0+9 | 17.8 | [ | |
纤维素/LDPE | 0∶1 | — | 70.0 | 46.3 | ||||
纤维素/LDPE | 1∶1 | 8.0 | 34.8 | 66 | 37.8 | |||
木屑/PS | 固定床:10℃∙min-1;500℃;N2 | 1∶0 | 31.3 | — | 48.8 | 17.8 | [ | |
木屑/PS | 0∶1 | 4.9 | — | 77.8 | 41.7 | |||
木屑/PS | 1∶3 | 39.2 | 39.7 | |||||
棕榈壳/HDPE | 固定床:5℃∙min-1;550℃;30min;N2 | 1∶0 | 28.2 | — | 21.1+18.0 | [ | ||
棕榈壳/HDPE | 0∶1 | 56 | ||||||
棕榈壳/HDPE | 1∶2 | 9.3 | 50.9+15.4 | |||||
棕榈壳/HDPE | 1∶1 | 15.6 | 41.4+10.0 | |||||
棕榈壳/HDPE | 2∶1 | 20.0 | 37.9+13.9 | |||||
核桃壳/PET | 固定床:10℃∙min-1;500℃;30min;N2 | 1∶1 | 25.9 | 32.0 | 28.9 | 25.1 | [ | |
核桃壳/PVC | 1∶1 | 20.0 | 31.3 | 17.6(T) | 40.5 | |||
核桃壳/PS | 1∶1 | 27.1 | 44.8 | 31.5 | ||||
核桃壳 | 30.6 | 28.9 | 20.8 | 24.4 | ||||
废报纸/HDPE | 固定床:10℃∙min-1;500℃;N2 | 1∶2 | 8.0 | 54.7+13.8 | [ | |||
废报纸/HDPE | 1∶1 | 14.5 | 55.5 | 26.8~34.8 | ||||
废报纸/HDPE | 2∶1 | 16.5 | 52.0 | |||||
废报纸/HDPE | 1∶0 | 29.8 | — | 40.5 | 17.0 | |||
废报纸/HDPE | 0∶1 | 1.0 | — | 52.8 | 43.8 | |||
棕榈壳/PS | 固定床:10℃∙min-1;600℃,60min;N2 2L·min-1 | 1∶1 | 61.6 | 38.0 | [ | |||
棕榈壳/PS | 4∶1 | 27.8 | 47.7 | |||||
棕榈壳/PS | 7∶3 | 23.2 | 49.9 | |||||
棕榈壳/PS | 3∶2 | 20.2 | 59.1 | |||||
棕榈壳/PS | 1∶0 | 31.7 | — | 46.1 | 11.9 | |||
棕榈壳/PS | 固定床:600℃,45min | 2∶3 | 68.3 | 40.3 | [ |
1 | 国家统计局农村社会经济调查司. 中国农村统计年鉴-2019[M]. 北京: 中国统计出版社, 2019. |
National Bureau of Statistics. China rural statistical yearbook[M]. Beijing: China Statistics Press, 2019. | |
2 | 中华人民共和国生态环境部. 第二次全国污染源普查公报[Z]. https://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html. |
Ministry of Ecology and Environment of the People’s Republic of China. Bulletin of the second national survey of pollution sources[Z]. https://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html. | |
3 | 马德帝. 西北地区地膜覆盖对土壤水分、养分及作物产量的meta分析[D]. 杨凌: 西北农林科技大学, 2018. |
MA Dedi. Impacts of plastic film mulching on soil water, soil nutrients and crop yields in northwestern China: a meta analysis[D]. Yangling: Northwest A and F University, 2018. | |
4 | 张斌, 王真, 金书秦. 中国农膜污染治理现状及展望[J]. 世界环境, 2019(6): 22-25. |
ZHANG Bin, WANG Zhen, JIN Shuqin. Current situation and prospect of agricultural film pollution treatment in China[J]. World Environment, 2019(6): 22-25. | |
5 | HOFFER A, JANCSEK-TURÓCZI B, TÓTH Á, et al. Emission factors for PM10 and polycyclic aromatic hydrocarbons (PAHs) from illegal burning of different types of municipal waste in households[J]. Atmospheric Chemistry and Physics, 2020, 20(24): 16135-16144. |
6 | DEWANGAN A, PRADHAN D, SINGH R K. Co-pyrolysis of sugarcane bagasse and low-density polyethylene: influence of plastic on pyrolysis product yield[J]. Fuel, 2016, 185: 508-516. |
7 | AKANCHA, KUMARI N, SINGH R K. Co-pyrolysis of waste polypropylene and rice bran wax-production of biofuel and its characterization[J]. Journal of the Energy Institute, 2019, 92(4): 933-946. |
8 | MAZEAU K, HEUX L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. The Journal of Physical Chemistry B, 2003, 107(10): 2394-2403. |
9 | OH S Y, SEO Y D. Polymer/biomass-derived biochar for use as a sorbent and electron transfer mediator in environmental applications[J]. Bioresource Technology, 2016, 218: 77-83. |
10 | MENG Fanrong, ZHOU Yijun, LIU Junyu, et al. Thermal decomposition behaviors and kinetics of carrageenan-poly vinyl alcohol bio-composite film[J]. Carbohydrate Polymers, 2018, 201: 96-104. |
11 | VÁRHEGYI G. Aims and methods in non-isothermal reaction kinetics[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 278-288. |
12 | BUI H H, TRAN K Q, CHEN W H. Pyrolysis of microalgae residues—A kinetic study[J]. Bioresource Technology, 2016, 199: 362-366. |
13 | ÇEPELIOĞULLAR Ö, PÜTÜN A E. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis[J]. Energy Conversion and Management, 2013, 75: 263-270. |
14 | CHAKRABORTY S, DUNFORD N T, GOAD C. A kinetic study of microalgae, municipal sludge and cedar wood co-pyrolysis[J]. Renewable Energy, 2021, 165: 514-524. |
15 | GUO Feiqiang, LIU Yuan, WANG Yan, et al. Pyrolysis kinetics and behavior of potassium-impregnated pine wood in TGA and a fixed-bed reactor[J]. Energy Conversion and Management, 2016, 130: 184-191. |
16 | HU Qiang, TANG Ziyue, YAO Dingding, et al. Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes[J]. Journal of Cleaner Production, 2020, 260: 121102. |
17 | ZHANG Xuesong, LEI Hanwu, ZHU Lei, et al. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220: 233-238. |
18 | WANG Shurong, DAI Gongxin, YANG Haiping, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
19 | Xingping KAI, YANG Tianhua, SHEN Shengqiang, et al. TG-FTIR-MS study of synergistic effects during co-pyrolysis of corn stalk and high-density polyethylene (HDPE)[J]. Energy Conversion and Management, 2019, 181: 202-213. |
20 | WU Zhiqiang, YANG Wangcai, YANG Bolun. Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass: effects of Nannochloropsis and Chlorella[J]. Bioresource Technology, 2018, 249: 501-509. |
21 | WU Kejing, LIU Ji, WU Yulong, et al. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer[J]. Bioresource Technology, 2014, 163: 18-25. |
22 | STARINK M J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods[J]. Thermochimica Acta, 2003, 404(1/2): 163-176. |
23 | BURRA K G, GUPTA A K. Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes[J]. Applied Energy, 2018, 220: 408-418. |
24 | CHEN W H, KUO P C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis[J]. Energy, 2011, 36(11): 6451-6460. |
25 | PEŠENJANSKI I, MILJKOVIĆ B, VIĆEVIĆ M. Pyrolysis kinetic modelling of wheat straw from the pannonian region[J]. Journal of Combustion, 2016, 2016: 9534063. |
26 | WANG Shaoqing, LIN Xiaona, LI Zhihe, et al. Thermal and kinetic behaviors of corn stover and polyethylene in catalytic co-pyrolysis[J]. BioResources, 2018, 13(2): 4102-4117. |
27 | YANG Hang, JI Guozhao, CLOUGH P T, et al. Kinetics of catalytic biomass pyrolysis using Ni-based functional materials[J]. Fuel Processing Technology, 2019, 195: 106145. |
28 | ZHOU Limin, ZOU Hongbin, WANG Yun, et al. Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene[J]. Renewable Energy, 2017, 102: 134-141. |
29 | XUE Yuan, BAI Xianglan. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Conversion and Management, 2018, 164: 629-638. |
30 | XU Dan, XIONG Yuanquan, ZHANG Shuping, et al. The synergistic mechanism between coke depositions and gas for H2 production from co-pyrolysis of biomass and plastic wastes via char supported catalyst[J]. Waste Management, 2021, 121: 23-32. |
31 | RAZZAQ M, ZEESHAN M, QAISAR S, et al. Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene[J]. Fuel, 2019, 257: 116119. |
32 | CHEN Lin, WANG Shuzhong, MENG Haiyu, et al. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of Paulownia wood blended with different plastics waste[J]. Applied Thermal Engineering, 2017, 111: 834-846. |
33 | YUAN Haoran, FAN Honggang, SHAN Rui, et al. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conversion and Management, 2018, 157: 517-526. |
34 | KASATAKA K, KUMAGAI S, KAMEDA T, et al. Enhancement of gasification and liquefaction during fast co-pyrolysis of cedar wood and polyethylene through control of synergistic interactions[J]. Bioresource Technology Reports, 2020, 11: 100431. |
35 | GUNASEE S D, DANON B, GÖRGENS J F, et al. Co-pyrolysis of LDPE and cellulose: synergies during devolatilization and condensation[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 307-314. |
36 | PANDA A K, SINGH R K, MISHRA D K. Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products — A world prospective[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 233-248. |
37 | 董芃, 尹水娥, 别如山. 典型塑料热解规律的研究[J]. 哈尔滨工业大学学报, 2006, 38(11): 1959-1962. |
DONG Peng, YIN Shuie, BIE Rushan. Research on pyrolysis characteristics of typical plastics[J]. Journal of Harbin Institute of Technology, 2006, 38(11): 1959-1962. | |
38 | NAVARRO M V, LÓPEZ J M, VESES A, et al. Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model[J]. Energy, 2018, 165: 731-742. |
39 | JAKAB E, VÁRHEGYI G, FAIX O. Thermal decomposition of polypropylene in the presence of wood-derived materials[J]. Journal of Analytical and Applied Pyrolysis, 2000, 56(2): 273-285. |
40 | ALVAREZ J, KUMAGAI S, WU Chunfei, et al. Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification[J]. International Journal of Hydrogen Energy, 2014, 39(21): 10883-10891. |
41 | CHEN P, XIE Qinglong, ADDY M, et al. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production[J]. Bioresource Technology, 2016, 215: 163-172. |
42 | 陈宏鹏, 金光, 陈义胜, 等. 聚丙烯与玉米秸秆共热解的实验研究[J]. 应用化工, 2019, 48(5): 1038-1042. |
CHEN Hongpeng, JIN Guang, CHEN Yisheng, et al. Experimental study on co-pyrolysis of polypropylene and corn stover[J]. Applied Chemical Industry, 2019, 48(5): 1038-1042. | |
43 | ZHANG Bo, ZHONG Zhaoping, DING Kuan, et al. Production of aromatic hydrocarbons from catalytic co-pyrolysis of biomass and high density polyethylene: Analytical Py-GC/MS study[J]. Fuel, 2015, 139: 622-628. |
44 | QUESADA L, PÉREZ A, GODOY V, et al. Optimization of the pyrolysis process of a plastic waste to obtain a liquid fuel using different mathematical models[J]. Energy Conversion and Management, 2019, 188: 19-26. |
45 | SAMAL B, VANAPALLI K R, DUBEY B K, et al. Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: influence of process parameters[J]. Science of the Total Environment, 2021, 794: 148723. |
46 | 梁江辉. 烘焙秸秆与废塑料微波共热解制备高品质生物油的研究[D]. 镇江: 江苏大学, 2018. |
LIANG Jianghui. Preparation of high quality bio-oil by microwave co-pyrolysis of torrefied straw and waste plastics[D]. Zhenjiang: Jiangsu University, 2018. | |
47 | ÖNAL E, UZUN B B, PÜTÜN A E. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene[J]. Energy Conversion and Management, 2014, 78: 704-710. |
48 | OYEDUN A O, GEBREEGZIABHER T, NG D K S, et al. Mixed-waste pyrolysis of biomass and plastics waste —A modelling approach to reduce energy usage[J]. Energy, 2014, 75: 127-135. |
49 | FAN Yongsheng, LU Dongsheng, WANG Jiawei, et al. Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design[J]. Energy, 2022, 239: 122234. |
50 | GU Jing, FAN Honggang, WANG Yazhuo, et al. Co-pyrolysis of xylan and high-density polyethylene: product distribution and synergistic effects[J]. Fuel, 2020, 267: 116896. |
51 | TANG Ziyue, CHEN Wei, CHEN Yingquan, et al. Co-pyrolysis of microalgae and plastic: characteristics and interaction effects[J]. Bioresource Technology, 2019, 274: 145-152. |
52 | Xingping KAI, LI Rundong, YANG Tianhua, et al. Study on the co-pyrolysis of rice straw and high density polyethylene blends using TG-FTIR-MS[J]. Energy Conversion and Management, 2017, 146: 20-33. |
53 | XUE Yuan, KELKAR A, BAI Xianglan. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer[J]. Fuel, 2016, 166: 227-236. |
54 | KUMAGAI S, FUJITA K, KAMEDA T, et al. Interactions of beech wood-polyethylene mixtures during co-pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 531-540. |
55 | CHEN Rongjie, ZHANG Jianhui, Liyong LUN, et al. Comparative study on synergistic effects in co-pyrolysis of tobacco stalk with polymer wastes: thermal behavior, gas formation, and kinetics[J]. Bioresource Technology, 2019, 292: 121970. |
56 | HOSSAIN M S, FERDOUS J, ISLAM M S, et al. Production of liquid fuel from co-pyrolysis of polythene waste and rice straw[J]. Energy Procedia, 2019, 160: 116-122. |
57 | BROWN L J, COLLARD F X, GÖRGENS J. Fast pyrolysis of fibre waste contaminated with plastic for use as fuel products[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 261-269. |
58 | ABNISA F, WAN DAUD W M A, RAMALINGAM S, et al. Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel[J]. Fuel, 2013, 108: 311-318. |
59 | ABNISA F, DAUD W M A W, SAHU J N. Pyrolysis of mixtures of palm shell and polystyrene: an optional method to produce a high-grade of pyrolysis oil[J]. Environmental Progress & Sustainable Energy, 2014, 33(3): 1026-1033. |
60 | CHEN Weimin, SHI Shukai, ZHANG Jun, et al. Co-pyrolysis of waste newspaper with high-density polyethylene: synergistic effect and oil characterization[J]. Energy Conversion and Management, 2016, 112: 41-48. |
61 | VAN NGUYEN Q, CHOI Y S, CHOI S K, et al. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam[J]. Journal of Environmental Management, 2019, 237: 24-29. |
62 | ÖZSIN G, PÜTÜN A E. A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics[J]. Journal of Cleaner Production, 2018, 205: 1127-1138. |
63 | WANG Zhiwei, BURRA K G, LEI Tingzhou, et al. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review[J]. Progress in Energy and Combustion Science, 2021, 84: 100899. |
64 | OH S Y, SEO Y D. Factors affecting the sorption of halogenated phenols onto polymer/biomass-derived biochar: effects of pH, hydrophobicity, and deprotonation[J]. Journal of Environmental Management, 2019, 232: 145-152. |
[1] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[2] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[3] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[4] | 赵佳琪, 黄亚继, 李志远, 丁雪宇, 祁帅杰, 张煜尧, 刘俊, 高嘉炜. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
[5] | 胡璇, 陈滢. 聚酯纤维微塑料胁迫下活性污泥系统性能及微生物群落的变化情况[J]. 化工进展, 2023, 42(2): 1051-1060. |
[6] | 范思强, 彭绍忠, 彭冲, 胡永康. 废塑料高附加值利用技术研究进展[J]. 化工进展, 2023, 42(2): 1020-1027. |
[7] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[8] | 尹爽, 梁伟杰, 陈沛嘉, 张志聪, 葛建芳. 聚己二酸丁二醇酯-共对苯二甲酸酯基可降解塑料改性研究进展[J]. 化工进展, 2022, 41(S1): 307-317. |
[9] | 刘楠, 胡一铭, 杨颖, 李红晋, 高竹青, 郝秀丽. 废旧聚丙烯/活性炭微波共裂解制取可燃裂解气与轻质裂解油[J]. 化工进展, 2022, 41(S1): 150-159. |
[10] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[11] | 徐丽洁, 刘豪杰, 薛瑞, 周小力, 周杰, 钱秀娟, 董维亮, 姜岷. 多学科交叉助力废塑料生物法循环回收利用[J]. 化工进展, 2022, 41(9): 5029-5036. |
[12] | 杨雅斌, 张迎霜, 杜海玲, 黄伟, 王晖. 环境对改性塑料表面亲/疏水转变的作用机制[J]. 化工进展, 2022, 41(4): 2140-2149. |
[13] | 王月, 赵秦峰, 张占全, 雷俊伟, 侯远东. 碳中和背景下国内外废塑料裂解法回收进展[J]. 化工进展, 2022, 41(3): 1470-1478. |
[14] | 陈欢, 万坤, 牛波, 张亚运, 龙东辉. 废弃塑料化学回收及升级再造研究进展[J]. 化工进展, 2022, 41(3): 1453-1469. |
[15] | 郭冠伦, 刘锐, 余洋洋, 汪云. 塑料衍生碳材料用于超级电容器的研究现状[J]. 化工进展, 2022, 41(2): 781-790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |