化工进展 ›› 2023, Vol. 42 ›› Issue (2): 1020-1027.DOI: 10.16085/j.issn.1000-6613.2022-0677
收稿日期:
2022-04-18
修回日期:
2022-05-30
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
彭冲
作者简介:
范思强(1991—),男,硕士研究生,研究方向为加氢工艺技术。E-mail:fansiqiang.fshy@sinopec.com。
基金资助:
FAN Siqiang1(), PENG Shaozhong1, PENG Chong2(
), HU Yongkang1
Received:
2022-04-18
Revised:
2022-05-30
Online:
2023-02-25
Published:
2023-03-13
Contact:
PENG Chong
摘要:
废塑料的低降解性会对环境造成持续污染,新冠疫情的扩散更加剧了塑料的使用与累积,因此废塑料资源的高效处理成为了亟待解决的技术问题。本文分析了当前主流的几种废塑料处理技术路线,认为资源化高附加值利用技术是最具有市场竞争力与绿色环保性的废塑料处理路线。综述了近年来国内外对于废塑料资源化高附加值利用技术的研究进展,讨论了传统热裂解技术的发展与变型,通过该路线废塑料转化为燃料产品的最高收率可达97%~98%(质量分数)。重点介绍了催化转化、化学处理、生物酶化、电催化、催化碳化以及电池能源化等新型技术手段,指出通过化学、催化、生物等多种技术手段实现将废塑料转化为喷气燃料、高附加值化学品与特殊用途的功能材料是该领域未来主流的研究方向与发展趋势,其中转化为高附加值单体的收率可达97%(质量分数)以上,从而实现将塑料垃圾从“清零”的初级处理阶段升级至“变废为用”、“变废为宝”,助力中国完成“双碳”目标。
中图分类号:
范思强, 彭绍忠, 彭冲, 胡永康. 废塑料高附加值利用技术研究进展[J]. 化工进展, 2023, 42(2): 1020-1027.
FAN Siqiang, PENG Shaozhong, PENG Chong, HU Yongkang. Research progress in high value-added utilization technology of waste plastics[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1020-1027.
工艺条件 | 催化剂类别 | 液体产品收率/% | 液体产品碳数 |
---|---|---|---|
250℃、1.38MPa、6h | mSiO2/Pt/SiO2 Pt/SiO2 | 93.3 92.0 | 12~16 18~26 |
250℃、1.38MPa、24h | mSiO2/Pt/SiO2 Pt/SiO2 | 89.7 79.7 | 12~16 18~26 |
250℃、1.38MPa、48h | mSiO2/Pt/SiO2 Pt/SiO2 | 75.9 73.5 | 12~16 18~26 |
表1 mSiO2/Pt/SiO2与常规Pt/SiO2催化剂的PE催化氢解效果
工艺条件 | 催化剂类别 | 液体产品收率/% | 液体产品碳数 |
---|---|---|---|
250℃、1.38MPa、6h | mSiO2/Pt/SiO2 Pt/SiO2 | 93.3 92.0 | 12~16 18~26 |
250℃、1.38MPa、24h | mSiO2/Pt/SiO2 Pt/SiO2 | 89.7 79.7 | 12~16 18~26 |
250℃、1.38MPa、48h | mSiO2/Pt/SiO2 Pt/SiO2 | 75.9 73.5 | 12~16 18~26 |
原料 | 主要工艺条件 | 处理方式 | 研究亮点 | 参考文献 |
---|---|---|---|---|
高密度聚乙烯(HDPE) | 500~800℃(最佳550℃)、N2气氛 | 热裂解 | 热解油550℃时收率达到70%(质量分数),主要是C8~C12的轻油馏分 | [ |
高密度聚乙烯(HDPE) | 430~490℃、 15~60min | 热裂解 | 430℃下处理15min,裂解油收率可达90.3%(质量分数),性质与CGO相似 460℃下处理60min,裂解油性质与LCO相似 | [ |
低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)混合塑料 | 300~400℃ | 热裂解 | 液体产品收率达到82%(质量分数),具有高辛烷值(约92)、高热值和低黏度等优质燃料特性 | [ |
聚丙烯(PP) | 450~600℃ | 热裂解 | 液体产品收率为81%~93%(质量分数),常压下处理得到汽油馏分产品收率高而真空条件下得到柴油馏分产品收率高,升温速率的快慢会影响液体产物分布 | [ |
低密度聚乙烯(LDPE) | 450~650℃、加热速率1~30℃/S | 热裂解/催化热解(HZSM-5) | 在热裂解中,较高的加热速率,即20℃/s有利于提高液态油的生成,在550℃时获得最大产油量93.42%(质量分数);催化热解中HZSM-5 的引入大大提高液体产品质量 | [ |
聚丙烯(PP)、聚苯乙烯(PS) | 500~600℃、加热速率10~100℃/min | 催化裂解 (HZSM-5) | 稻草和甘蔗渣与聚丙烯和聚苯乙烯进行了共裂解,催化剂的引入提高生成油品的质量,黏度、密度和闪点与轻质燃料油相似同时氧含量大大降低 | [ |
聚丙烯(PP) | 7.0MPa、350℃ | 催化裂解 (Ni-Au/MOR) | 生成的液体产品主要由正构烷烃、异构烷烃与芳烃组成,与石化来源的柴油相似度达90% | [ |
混合塑料:低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚苯乙烯(PS) | 2.0MPa、 375~425℃ | 催化裂解(Al-SBA-15/Al-SBA-16) | 高温下催化剂差别不影响反应效果,低温下Al-SBA-15显示出良好的活性,液体产品收率更高 | [ |
表2 国内外以燃料为目标产物的废塑料高附加值利用研究
原料 | 主要工艺条件 | 处理方式 | 研究亮点 | 参考文献 |
---|---|---|---|---|
高密度聚乙烯(HDPE) | 500~800℃(最佳550℃)、N2气氛 | 热裂解 | 热解油550℃时收率达到70%(质量分数),主要是C8~C12的轻油馏分 | [ |
高密度聚乙烯(HDPE) | 430~490℃、 15~60min | 热裂解 | 430℃下处理15min,裂解油收率可达90.3%(质量分数),性质与CGO相似 460℃下处理60min,裂解油性质与LCO相似 | [ |
低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)混合塑料 | 300~400℃ | 热裂解 | 液体产品收率达到82%(质量分数),具有高辛烷值(约92)、高热值和低黏度等优质燃料特性 | [ |
聚丙烯(PP) | 450~600℃ | 热裂解 | 液体产品收率为81%~93%(质量分数),常压下处理得到汽油馏分产品收率高而真空条件下得到柴油馏分产品收率高,升温速率的快慢会影响液体产物分布 | [ |
低密度聚乙烯(LDPE) | 450~650℃、加热速率1~30℃/S | 热裂解/催化热解(HZSM-5) | 在热裂解中,较高的加热速率,即20℃/s有利于提高液态油的生成,在550℃时获得最大产油量93.42%(质量分数);催化热解中HZSM-5 的引入大大提高液体产品质量 | [ |
聚丙烯(PP)、聚苯乙烯(PS) | 500~600℃、加热速率10~100℃/min | 催化裂解 (HZSM-5) | 稻草和甘蔗渣与聚丙烯和聚苯乙烯进行了共裂解,催化剂的引入提高生成油品的质量,黏度、密度和闪点与轻质燃料油相似同时氧含量大大降低 | [ |
聚丙烯(PP) | 7.0MPa、350℃ | 催化裂解 (Ni-Au/MOR) | 生成的液体产品主要由正构烷烃、异构烷烃与芳烃组成,与石化来源的柴油相似度达90% | [ |
混合塑料:低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚苯乙烯(PS) | 2.0MPa、 375~425℃ | 催化裂解(Al-SBA-15/Al-SBA-16) | 高温下催化剂差别不影响反应效果,低温下Al-SBA-15显示出良好的活性,液体产品收率更高 | [ |
1 | WALKER Tony R, XANTHOS Dirk. A call for Canada to move toward zero plastic waste by reducing and recycling single-use plastics[J]. Resources, Conservation and Recycling, 2018, 133: 99-100. |
2 | HARUSSANI M M, SAPUAN S M, RASHID Umer, et al. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic[J]. Science of the Total Environment, 2022, 803: 149911. |
3 | CANOPOLI Luisa, COULON Frédéric, WAGLAND Stuart T. Degradation of excavated polyethylene and polypropylene waste from landfill[J]. The Science of the Total Environment, 2020, 698: 134125. |
4 | GENG Xiaomeng, SONG Nan, ZHAO Youcai, et al. Waste plastic resource recovery from landfilled refuse: A novel waterless cleaning method and its cost-benefit analysis[J]. Journal of Environmental Management, 2022, 306: 114462. |
5 | HAHLADAKIS John N, IACOVIDOU Eleni. Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity? [J]. The Science of the Total Environment, 2018, 630: 1394-1400. |
6 | KLAIMY S, LAMONIER J F, CASETTA M, et al. Recycling of plastic waste using flash pyrolysis—Effect of mixture composition[J]. Polymer Degradation and Stability, 2021, 187: 109540. |
7 | ZHAO Xianhui, KOREY Matthew, LI Kai, et al. Plastic waste upcycling toward a circular economy[J]. Chemical Engineering Journal, 2022, 428: 131928. |
8 | AHMAD Nauman, AHMAD Nabeel, MAAFA Ibrahim M, et al. Thermal conversion of polystyrene plastic waste to liquid fuel via ethanolysis[J]. Fuel, 2020, 279: 118498. |
9 | MEYS Raoul, FRICK Felicitas, WESTHUES Stefan, et al. Towards a circular economy for plastic packaging wastes-the environmental potential of chemical recycling[J]. Resources, Conservation and Recycling, 2020, 162: 105010. |
10 | ZHOU Nan, DAI Leilei, LV Yuancai, et al. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production[J]. Chemical Engineering Journal, 2021, 418: 129412. |
11 | LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor[J]. Chemical Engineering Journal, 2011, 173(1): 62-71. |
12 | CELIK Gokhan, KENNEDY Robert M, HACKLER Ryan A, et al. Upcycling single-use polyethylene into high-quality liquid products[J]. ACS Central Science, 2019, 5(11): 1795-1803. |
13 | TENNAKOON Akalanka, WU Xun, PATERSON Alexander L, et al. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nature Catalysis, 2020, 3(11): 893-901. |
14 | JACOBY Mitch. Converting polyethylene to valuable alkanes[J]. C&EN Global Enterprise, 2020, 98(40): 9. |
15 | JIN Kai, VOZKA Petr, KILAZ Gozdem, et al. Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP)[J]. Fuel, 2020, 273: 117726. |
16 | GUIRONNET Damien, PETERS Baron. Tandem catalysts for polyethylene upcycling: A simple kinetic model[J]. The Journal of Physical Chemistry A, 2020, 124(19): 3935-3942. |
17 | JEON Wonjin, KIM Young-Doo, LEE Kyong-Hwan. A comparative study on pyrolysis of bundle and fluffy shapes of waste packaging plastics[J]. Fuel, 2021, 283: 119260. |
18 | WANG Chenxi, LEI Hanwu, KONG Xiao, et al. Catalytic upcycling of waste plastics over nanocellulose derived biochar catalyst for the coupling harvest of hydrogen and liquid fuels[J]. Science of the Total Environment, 2021, 779: 146463. |
19 | FAN Liangliang, ZHANG Yaning, LIU Shiyu, et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO[J]. Energy Conversion and Management, 2017, 149: 432-441. |
20 | PAN Zeyou, XUE Xiangfei, ZHANG Changsen, et al. Evaluation of process parameters on high-density polyethylene hydro-liquefaction products[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 146-152. |
21 | ALSALEM Smith, LETTIERI Peter, BAEYENS Jane. The thermal pyrolysis of high density polyethylene (HDPE)[J]. Process Safety and Environmental Protection, 2019, 127: 171-179. |
22 | PALOS Roberto, Alazne GUTIÉRREZ, VELA Francisco J, et al. Assessing the potential of the recycled plastic slow pyrolysis for the production of streams attractive for refineries[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104668. |
23 | Pallab DAS, TIWARI Pankaj. Valorization of packaging plastic waste by slow pyrolysis[J]. Resources, Conservation and Recycling, 2018, 128: 69-77. |
24 | PARKU George Kofi, COLLARD François-Xavier, GÖRGENS Johann F. Pyrolysis of waste polypropylene plastics for energy recovery: Influence of heating rate and vacuum conditions on composition of fuel product[J]. Fuel Processing Technology, 2020, 209: 106522. |
25 | WU Yunfei, WANG Kechao, WEI Baoyong, et al. Pyrolysis behavior of low-density polyethylene over HZSM-5 via rapid infrared heating[J]. Science of the Total Environment, 2022, 806: 151287. |
26 | SURIAPPARAO Dadi V, VINU R, SHUKLA Arun, et al. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation[J]. Bioresource Technology, 2020, 302: 122775. |
27 | MANGESH V L, TAMIZHDURAI P, Santhana KRISHNAN P, et al. Green energy: Hydroprocessing waste polypropylene to produce transport fuel[J]. Journal of Cleaner Production, 2020, 276: 124200. |
28 | MUNIR Dureem, ABDULLAH, PIEPENBREIER Frank, et al. Hydrocracking of a plastic mixture over various micro-mesoporous composite zeolites[J]. Powder Technology, 2017, 316: 542-550. |
29 | ZHANG Fan, ZENG Manhao, YAPPERT Ryan D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
30 | VOLLMER Ina, JENKS Michael J F, MAYORGA GONZÁLEZ Rafael, et al. Plastic waste conversion over a refinery waste catalyst[J]. Angewandte Chemie International Edition, 2021, 60(29): 16101-16108. |
31 | AKUBO Kaltume, NAHIL Mohamad Anas, WILLIAMS Paul T. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts[J]. Journal of the Energy Institute, 2019, 92(1): 195-202. |
32 | KIM Young-Min, Jungho JAE, KIM Beom-Sik, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973. |
33 | KIM Hee Taek, KIM Jae Kyun, Hyun Gil CHA, et al. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19396-19406. |
34 | ZENG Manhao, LEE Yu Hsuan, STRONG Garrett, et al. Chemical upcycling of polyethylene to value-added α, ω-divinyl-functionalized oligomers[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13926-13936. |
35 | ZHOU Hua, REN Yue, LI Zhenhua, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel[J]. Nature Communications, 2021, 12(1): 4679. |
36 | VIEIRA Octávia, RIBEIRO Rui S, DIAZ DE TUESTA Jose L, et al. A systematic literature review on the conversion of plastic wastes into valuable 2D graphene-based materials[J]. Chemical Engineering Journal, 2022, 428: 131399. |
37 | YUAN Xiangzhou, LEE Jong Gyu, YUN Heesun, et al. Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2 [J]. Chemical Engineering Journal, 2020, 397: 125350. |
38 | BAZARGAN Alireza, MCKAY Gordon. A review—Synthesis of carbon nanotubes from plastic wastes[J]. Chemical Engineering Journal, 2012, 195/196: 377-391. |
39 | GONG Jiang, LIU Jie, WEN Xin, et al. Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite[J]. Industrial & Engineering Chemistry Research, 2014, 53(11): 4173-4181. |
40 | PANAHI Aidin, SUN Xiao, SONG Guangchao, et al. On the influences of carrier gas type and flow rate on CVD synthesis of CNTs from postconsumer polyethylene[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 14004-14014. |
41 | YUAN Xiangzhou, CHO Moon-Kyung, LEE Jong Gyu, et al. Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption[J]. Environmental Pollution, 2020, 265: 114868. |
42 | SOGANCIOGLU Merve, Esra YEL, AHMETLI Gulnare. Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars[J]. Journal of Cleaner Production, 2017, 165: 369-381. |
43 | SOGANCIOGLU Merve, Esra YEL, AHMETLI Gulnare. Behaviour of waste polypropylene pyrolysis char-based epoxy composite materials[J]. Environmental Science and Pollution Research, 2020, 27(4): 3871-3884. |
44 | CHAUDHARY Savita, KUMARI Manisha, CHAUHAN Pooja, et al. Upcycling of plastic waste into fluorescent carbon dots: An environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications[J]. Waste Management, 2021, 120: 675-686. |
45 | ELESSAWY Noha A, EL-SAYED Eman M, Safaa ALI, et al. One-pot green synthesis of magnetic fullerene nanocomposite for adsorption characteristics[J]. Journal of Water Process Engineering, 2020, 34: 101047. |
46 | CHAO Yuwen, LIU Bingguo, RONG Qian, et al. Porous carbon materials derived from discarded COVID-19 masks via microwave solvothermal method for lithium‑sulfur batteries[J]. Science of the Total Environment, 2022, 817: 152995. |
47 | KANBUR Uddhav, ZANG Guiyan, PATERSON Alexander L, et al. Catalytic carbon-carbon bond cleavage and carbon-element bond formation give new life for polyolefins as biodegradable surfactants[J]. Chem, 2021, 7(5): 1347-1362. |
48 | CAI Weizi, LIU Peipei, CHEN Bin, et al. Plastic waste fuelled solid oxide fuel cell system for power and carbon nanotube cogeneration[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1867-1876. |
49 | ZHANG Fan, WANG Fang, WEI Xiangyue, et al. From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials[J]. Journal of Energy Chemistry, 2022, 69: 369-388. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[4] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[5] | 吴正浩, 周天航, 蓝兴英, 徐春明. 人工智能驱动化学品创新设计的实践与展望[J]. 化工进展, 2023, 42(8): 3910-3916. |
[6] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[7] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[8] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[9] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[10] | 陈昊, 张传浩, 于峰, 范彬彬, 李瑞丰. Y型沸石在异丁醇齐聚反应中的催化性能[J]. 化工进展, 2023, 42(2): 794-802. |
[11] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[12] | 薛马晨, 杨伯伦, 夏春谷, 朱刚利. 乙醇缩合制高碳醇(C6+醇)多相催化剂研究进展[J]. 化工进展, 2023, 42(1): 194-203. |
[13] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[14] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
[15] | 寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 764
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 529
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |