1 |
苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3): 1384-1394.
|
|
SU Wenli, FAN Yu. Progress of electrocatalytic reduction of CO2 on metal-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1384-1394.
|
2 |
ADNAN M A, KIBRIA M G. Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways[J]. Applied Energy, 2020, 278: 115614.
|
3 |
ORELLA M J, BROWN S M, LEONARD M E, et al. A general technoeconomic model for evaluating emerging electrolytic processes[J]. Energy Technology, 2020, 8(11): 1900994.
|
4 |
DE LUNA P, HAHN C, HIGGINS D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
|
5 |
JOUNY M, LUC W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2165-2177.
|
6 |
NA J, SEO B, KIM J, et al. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation[J]. Nature Communications, 2019, 10: 5193.
|
7 |
GUO W W, LIU S J, TAN X X, et al. Highly efficient CO2 electroreduction to methanol through atomically dispersed Sn coupled with defective CuO catalysts[J]. Angewandte Chemie International Edition, 2021, 60(40): 21979-21987.
|
8 |
LU L, SUN X F, MA J, et al. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels[J]. Angewandte Chemie, 2018, 130(43): 14345-14349.
|
9 |
SUN X F, ZHU Q G, KANG X C, et al. Molybdenum-bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol[J]. Angewandte Chemie International Edition, 2016, 55(23): 6771-6775.
|
10 |
冯建朋, 张香平, 尚大伟, 等. 离子液体中电化学还原CO2研究评述与展望[J]. 化工学报, 2018, 69(1): 69-75.
|
|
FENG Jianpeng, ZHANG Xiangping, SHANG Dawei, et al. Review and prospect of CO2 electro-reduction in ionic liquids[J]. CIESC Journal, 2018, 69(1): 69-75.
|
11 |
江重阳, 冯佳奇, 曾少娟, 等. CO2电化学还原过程中电解质研究现状及趋势[J]. 科学通报, 2021, 66(7): 716-727.
|
|
JIANG Chongyang, FENG Jiaqi, ZENG Shaojuan, et al. Research status and trend of electrolytes in the CO2 electrochemical reduction[J]. Chinese Science Bulletin, 2021, 66(7): 716-727.
|
12 |
CHANG F, ZHAN G X, WU Z X, et al. Technoeconomic analysis and process design for CO2 electroreduction to CO in ionic liquid electrolyte[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(27): 9045-9052.
|
13 |
MEUNIER N, CHAUVY R, MOUHOUBI S, et al. Alternative production of methanol from industrial CO2 [J]. Renewable Energy, 2020, 146: 1192-1203.
|
14 |
BAINS P, PSARRAS P, WILCOX J. CO2 capture from the industry sector[J]. Progress in Energy and Combustion Science, 2017, 63: 146-172.
|
15 |
LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
|
16 |
PAULILLO A, PUCCIARELLI M, GRIMALDI F, et al. The life-cycle environmental performance of producing formate via electrochemical reduction of CO2 in ionic liquid[J]. Green Chemistry, 2021, 23(17): 6639-6651.
|
17 |
HUANG Z, GRIM R G, SCHAIDLE J A, et al. The economic outlook for converting CO2 and electrons to molecules[J]. Energy & Environmental Science, 2021, 14(7): 3664-3678.
|
18 |
何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
|
|
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773.
|
19 |
李冰玉, 毛庆, 赵健, 等. 二氧化碳电化学还原反应器的研究进展[J]. 化工进展, 2019, 38(11): 4901-4910.
|
|
LI Bingyu, MAO Qing, ZHAO Jian, et al. Research progress in CO2 electroreduction reactor[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4901-4910.
|
20 |
杨博龙, 韩清, 向中华. 质子交换膜燃料电池膜电极结构与设计研究进展[J]. 化工进展, 2021, 40(9): 4882-4893.
|
|
YANG Bolong, HAN Qing, XIANG Zhonghua. Progress of membrane electrode structure and its design for proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4882-4893.
|
21 |
AINSCOUGH C, PETERSON D, MILLER E, et al. DOE hydrogen and fuel cells program record[R]. DOE: NREL, 2014.
|
22 |
JAMES B, COLELLA W, MOTON J, et al. PEM electrolysis H2A production case study documentation[R]. Office of Scientific and Technical Information (OSTI), 2013.
|
23 |
PETERSON D, VICKERS J, DE S. DOE hydrogen and fuel cells program record: Hydrogen production cost from PEM electrolysis[R]. DOE: NREL, 2019.
|
24 |
VERMA S, LU S, KENIS P J A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption[J]. Nature Energy, 2019, 4(6): 466-474.
|
25 |
HUANG Y, ZHANG X P, ZHANG X, et al. Thermodynamic modeling and assessment of ionic liquid-based CO2 capture processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11805-11817.
|
26 |
SCOTT J. The CE plant cost index: an update[J]. Chemical Engineering, 2018, 125(4): 76-77.
|
27 |
SPURGEON J M, KUMAR B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products[J]. Energy & Environmental Science, 2018, 11(6): 1536-1551.
|
28 |
ASSEN N VON DER, JUNG J, BARDOW A. Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls[J]. Energy & Environmental Science, 2013, 6(9): 2721.
|
29 |
ASSEN N VON DER, VOLL P, PETERS M, et al. Life cycle assessment of CO2 capture and utilization: a tutorial review[J]. Chemical Society Reviews, 2014, 43(23): 7982-7994.
|
30 |
STAFFELL I. Measuring the progress and impacts of decarbonising British electricity[J]. Energy Policy, 2017, 102: 463-475.
|
31 |
DAVID J, HERZOT H. The cost of carbon capture[C]//WILLIAMS D J, DURIE R A, MCMULLAN P, et al. Proc. 5th International Conference on Greenhouse Gas Control Technologies. Australia: CSIRO, 2001: 985-990.
|
32 |
AHMED U. Techno-economic feasibility of methanol synthesis using dual fuel system in a parallel process design configuration with control on green house gas emissions[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6278-6290.
|
33 |
张媛媛, 王永刚, 田亚峻. 典型现代煤化工过程的二氧化碳排放比较[J]. 化工进展, 2016, 35(12): 4060-4064.
|
|
ZHANG Yuanyuan, WANG Yonggang, TIAN Yajun. Comparative studies on carbon dioxide emissions of typical modern coal chemical processes[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4060-4064.
|