1 |
XIAO W S, WANG R S, HANDY D E, et al. NAD(H) and NADP(H) redox couples and cellular energy metabolism[J]. Antioxidants & Redox Signaling, 2018, 28(3): 251-272.
|
2 |
MIYAKE Y, NAKAMURA Y, TAKAYAMA N, et al. Alpha reduced nicotinamide adenine dinucleotide-dependent reductase reactions of rat liver microsomes[J]. Journal of Biochemistry, 1975, 78(4): 773-783.
|
3 |
IZAGUIRRE G, PIETRUSZKO R, CHO S, et al. Human aldehyde dehydrogenase catalytic activity and structural interactions with coenzyme analogs[J]. Journal of Biomolecular Structure and Dynamics, 2001, 19(3): 429-447.
|
4 |
PARRY R J, HOYT J C. Purification and preliminary characterization of (E)-3-(2, 4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid synthase, an enzyme involved in biosynthesis of the antitumor agent sparsomycin[J]. Journal of Bacteriology, 1997, 179(4): 1385-1392.
|
5 |
STEVENS L A, KATO J, KASAMATSU A, et al. The ARH and macrodomain families of α-ADP-ribose-acceptor hydrolases catalyze α-NAD+Hydrolysis[J]. ACS Chemical Biology, 2019, 14(12): 2576-2584.
|
6 |
SCHMIDT M T, SMITH B C, JACKSON M D, et al. Coenzyme specificity of sir2 protein deacetylases: implications for physiological regulation[J]. Journal of Biological Chemistry, 2004, 279(38): 40122-40129.
|
7 |
DE FLORA A, GUIDA L, FRANCO L, et al. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum[J]. The Biochemical Journal, 1996, 320 (Pt 2): 665-671.
|
8 |
BEAUPRE B A, HOAG M R, CARMICHAEL B R, et al. Kinetics and equilibria of the reductive and oxidative half-reactions of human renalase with α-NADPH[J]. Biochemistry, 2013, 52(49): 8929-8937.
|
9 |
BEAUPRE B A, CARMICHAEL B R, HOAG M R, et al. Renalase is an α-NAD(P)H oxidase/anomerase[J]. Journal of the American Chemical Society, 2013, 135(37): 13980-13987.
|
10 |
COHEN M S, CHANG P. Insights into the biogenesis, function, and regulation of ADP-ribosylation[J]. Nature Chemical Biology, 2018, 14(3): 236-243.
|
11 |
PAUL C E, ARENDS I W C E, HOLLMANN F. Is simpler better? synthetic nicotinamide cofactor analogues for redox chemistry[J]. ACS Catalysis, 2014, 4(3): 788-797.
|
12 |
PAUL C E, HOLLMANN F. A survey of synthetic nicotinamide cofactors in enzymatic processes[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4773-4778.
|
13 |
ZACHOS I, NOWAK C, SIEBER V. Biomimetic cofactors and methods for their recycling[J]. Current Opinion in Chemical Biology, 2019, 49: 59-66.
|
14 |
HALLÉ F, FIN A, ROVIRA A R, et al. Emissive synthetic cofactors: enzymatic interconversions of tzA analogues of ATP, NAD+, NADH, NADP+, and NADPH[J]. Angewandte Chemie International Edition, 2018, 57(4): 1087-1090.
|
15 |
WANG L, JI D B, LIU Y X, et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer[J]. ACS Catalysis, 2017, 7(3): 1977-1983.
|
16 |
ROVIRA A R, FIN A, TOR Y. Emissive synthetic cofactors: an isomorphic, isofunctional, and responsive NAD+ analogue[J]. Journal of the American Chemical Society, 2017, 139(44): 15556-15559.
|
17 |
DAI Z F, ZHANG X N, NASERTORABI F, et al. Facile chemoenzymatic synthesis of a novel stable mimic of NAD[J]. Chemical Science, 2018, 9(44): 8337-8342.
|
18 |
BLACK W B, ZHANG L Y, MAK W S, et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis[J]. Nature Chemical Biology, 2020, 16(1): 87-94.
|
19 |
LIU W J, WU S G, HOU S H, et al. Synthesis of phosphodiester-type nicotinamide adenine dinucleotide analogs[J]. Tetrahedron, 2009, 65(40): 8378-8383.
|
20 |
侯淑华, 刘武军, 赵宗保. 新型烟酰胺腺嘌呤二核苷酸(NAD)类似物的合成及其辅酶活性[J]. 有机化学, 2012, 32(2): 349-353.
|
|
HOU Shuhua, LIU Wujun, ZHAO Zongbao. Synthesis of novel nicotinamide adenine dinucleotide (NAD) analogs and their coenzyme activities[J]. Chinese Journal of Organic Chemistry, 2012, 32(2): 349-353.
|
21 |
FRIEDLOS F, JARMAN M, DAVIES L C, et al. Identification of novel reduced pyridinium derivatives as synthetic co-factors for the enzyme DT diaphorase (NAD(P)H dehydrogenase (quinone), EC 1.6.99.2)[J]. Biochemical Pharmacology, 1992, 44(1): 25-31.
|
22 |
NOWAK C, PICK A, LOMMES P, et al. Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase: providing a regeneration system for artificial cofactors[J]. ACS Catalysis, 2017, 7(8): 5202-5208.
|
23 |
LO H C, FISH R H. Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1, 4-NADH derivatives, and chiral synthesis[J]. Angewandte Chemie, 2002, 114(3): 496-499.
|
24 |
RYAN J D, FISH R H, CLARK D S. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1, 4-NADH cofactors[J]. ChemBioChem, 2008, 9(16): 2579-2582.
|
25 |
LUTZ J, HOLLMANN F, HO T V, et al. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis[J]. Journal of Organometallic Chemistry, 2004, 689(25): 4783-4790.
|
26 |
OKAMOTO Y, KÖHLER V, PAUL C E, et al. Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme[J]. ACS Catalysis, 2016, 6(6): 3553-3557.
|
27 |
PAUL C E, GARGIULO S, OPPERMAN D J, et al. Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases[J]. Organic Letters, 2013, 15(1): 180-183.
|
28 |
MAKAROV M V, MIGAUD M E. Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives[J]. Beilstein Journal of Organic Chemistry, 2019, 15: 401-430.
|
29 |
MADERN J M, KIM R Q, MISRA M, et al. Synthesis of stable NAD+ mimics as inhibitors for the legionella pneumophila phosphoribosyl ubiquitylating enzyme SdeC[J]. ChemBioChem, 2020, 21(20): 2903-2907.
|
30 |
DEPAIX A, KOWALSKA J. NAD analogs in aid of chemical biology and medicinal chemistry[J]. Molecules, 2019, 24(22): 4187.
|
31 |
JI D, WANG L, HOU S, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide[J]. Journal of the American Chemical Society, 2011, 133(51): 20857-20862.
|
32 |
CHENG W C, KURTH M J. The zincke reaction. A review[J]. Organic Preparations and Procedures International, 2002, 34(6): 585-608.
|
33 |
WALT D R, FINDEIS M A, RIOS-MERCADILLO V M, et al. An efficient chemical and enzymic synthesis of nicotinamide adenine dinucleotide (NAD+)[J]. Journal of the American Chemical Society, 1984, 106(1): 234-239.
|
34 |
IKBAL M, CERCEAU C, GOFFIC F, et al. Synthesis of the two enantiomers of the carbocyclic analog of nicotinamide ribose and analysis of their biological properties[J]. European Journal of Medical Chemistry, 1989, 24(4): 415-420.
|
35 |
HOCKOVÁ D, HOLÝ A. Synthesis of some “abbreviated” NAD+ analogues[J]. Collection of Czechoslovak Chemical Communications, 1997, 62(6): 948-956.
|
36 |
HOCKOVÁ D, VOTAVOVÁ H, HOLÝ A. Synthesis and chiroptical properties of some abbreviated NAD+ analogues[J]. Tetrahedron: Asymmetry, 1995, 6(9): 2375-2384.
|
37 |
SCHWANEBERG U, SCHMIDT-DANNERT C, SCHMITT J, et al. A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A[J]. Analytical Biochemistry, 1999, 269(2): 359-366.
|
38 |
CARELLI V, LIBERATORE F, SCIPIONE L, et al. Dithionite adducts of pyridinium salts: regioselectivity of formation and mechanisms of decomposition[J]. Tetrahedron, 2005, 61(43): 10331-10337.
|
39 |
ZHANG R Z, XU Y, XIAO R. Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers[J]. Biotechnology Advances, 2015, 33(8): 1671-1684.
|