1 |
YIMIN Chen A, CHANGAN Xu A. How to narrow the CO2 gap from growth-optimal to flue gas levels by using microalgae for carbon capture and sustainable biomass production[J]. Journal of Cleaner Production, 2021, 280: 124448.
|
2 |
ZHOU W G, WANG J H, CHEN P, et al. Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1163-1175.
|
3 |
CUEVAS-CASTILLO G A, NAVARRO-PINEDA F S, RODRÍGUEZ S A BAZ, et al. Advances on the processing of microalgal biomass for energy-driven biorefineries[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109606.
|
4 |
NAYAK M, SUH W I, LEE B, et al. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide[J]. Energy Conversion and Management, 2018, 156: 45-52.
|
5 |
SONG C F, QIU Y T, XIE M L, et al. Novel regeneration and utilization concept using rich chemical absorption solvent as a carbon source for microalgae biomass production[J]. Industrial & Engineering Chemistry Research, 2019, 58: 11720.
|
6 |
ROSA G M D, DE MORAIS M G, COSTA J A V. Green alga cultivation with monoethanolamine: evaluation of CO2 fixation and macromolecule production[J]. Bioresource Technology, 2018, 261: 206-212.
|
7 |
白丽菊, 侯博, 江波, 等. 化学吸收剂强化微藻固碳研究进展[J]. 化工进展, 2020, 39(S2): 106-114.
|
|
BAI Liju, HOU Bo, JIANG Bo, et al. Research progress of CO2 fixation by chemical absorbents enhanced microalgae[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 106-114.
|
8 |
SUN Z L, ZHANG D M, YAN C H, et al. Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(4): 730-738.
|
9 |
ROSA G M, MORAIS M G, COSTA J A V. Fed-batch cultivation with CO2 and monoethanolamine: influence on Chlorella fusca LEB 111 cultivation, carbon biofixation and biomolecules production[J]. Bioresource Technology, 2019, 273: 627-633.
|
10 |
王兆印, 李一锋, 张旭, 等. 有机胺对螺旋藻生长及固碳效果的影响[J]. 高校化学工程学报, 2017, 31(2): 377-386.
|
|
WANG Zhaoyin, LI Yifeng, ZHANG Xu, et al. Effects of organic amine on spirulina growth and carbon fixation[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(2): 377-386.
|
11 |
CARDIAS B B, DE MORAIS M G, COSTA J A V. CO2 conversion by the integration of biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition[J]. Bioresource Technology, 2018, 267: 77-83.
|
12 |
KANIA K, ZIENKIEWICZ M, DROŻAK A. Stable transformation of unicellular green alga Coccomyxa subellipsoidea C-169 via electroporation[J]. Protoplasma, 2020, 257(2): 607-611.
|
13 |
WANG Z Y, LUO F, WANG Z T, et al. The potential growth and lipid accumulation in Coccomyxa subellipsoidea triggered by glucose combining with sodium acetate[J]. World Journal of Microbiology and Biotechnology, 2019, 35(7): 1-13.
|
14 |
魏东, 李露. 补充CO2提高胶球藻C-169生物量和脂肪酸产率的研究[J]. 现代食品科技, 2014, 30(4): 34-39.
|
|
WEI Dong, LI Lu. Enhanced yield of biomass and fatty acids from coccomyxa subellipsoidea C-169 by CO2 supplement[J]. Modern Food Science and Technology, 2014, 30(4): 34-39.
|
15 |
RODAS-ZULUAGA L I, CASTAÑEDA-HERNÁNDEZ L, CASTILLO-VACAS E I, et al. Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp[J]. Journal of CO2 Utilization, 2021, 43: 101371.
|
16 |
CHEN Y M, XU C G, VAIDYANATHAN S. Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production[J]. Applied Energy, 2020, 261: 114420.
|
17 |
ELOKA-EBOKA A C, INAMBAO F L. Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production[J]. Applied Energy, 2017, 195: 1100-1111.
|
18 |
BOONMA S, CHAIKLANGMUANG S, CHAIWONGSAR S, et al. Enhanced carbon dioxide fixation and bio-oil production of a microalgal consortium[J]. Clean: Soil, Air, Water, 2015, 43(5): 761-766.
|
19 |
SWARNALATHA G V, HEGDE N S, CHAUHAN V S, et al. The effect of carbon dioxide rich environment on carbonic anhydrase activity, growth and metabolite production in indigenous freshwater microalgae[J]. Algal Research, 2015, 9: 151-159.
|
20 |
LIN W R, LAI Y C, SUNG P K, et al. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 131-141.
|
21 |
WEI L, SHEN C, HAJJAMI M EL, et al. Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level[J]. Metabolic Engineering, 2019, 54: 96-108.
|
22 |
WANG H, YAN X, AIGNER H, et al. Rubisco condensate formation by CcmM in β-carboxysome biogenesis[J]. Nature, 2019, 566(7742): 131-135.
|
23 |
YANG B, LIU J, MA X N, et al. Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae[J]. Biotechnology for Biofuels, 2017, 10: 229.
|
24 |
邢海亮, 董训赞, 韩本勇, 等. 二氧化碳联合核桃壳提取液促进单针藻Monoraphidium sp.QLZ-3的生长和油脂积累[J]. 化工进展, 2020, 39(4): 1575-1582.
|
|
XING Hailiang, DONG Xunzan, HAN Benyong, et al. Cell growth and lipid accumulation of Monoraphidium sp. QLZ-3 in walnut shell extracts with carbon dioxide[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1575-1582.
|
25 |
ALLEN J W, DIRUSSO C C, BLACK P N. Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea[J]. Algal Research, 2015, 10: 110-120.
|
26 |
YANG J, PAN Y F, BOWLER C, et al. Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum[J]. Algal Research, 2016, 15: 50-58.
|
27 |
XUE J, NIU Y F, HUANG T, et al. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation[J]. Metabolic Engineering, 2015, 27: 1-9.
|
28 |
ASHTIANI F R, JALILI H, RAHAIE M, et al. Effect of mixed culture of yeast and microalgae on acetyl-CoA carboxylase and glycerol-3-phosphate acyltransferase expression[J]. Journal of Bioscience and Bioengineering, 2021, 131(4): 364-372.
|
29 |
MODIRI S, ZAHIRI H S, VALI H, et al. Evaluation of transcription profile of acetyl-CoA carboxylase (ACCase) and acyl-ACP synthetase (AAS) to reveal their roles in induced lipid accumulation of Synechococcus sp. HS01[J]. Renewable Energy, 2018, 129: 347-356.
|
30 |
PENG H F, WEI D, CHEN G, et al. Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169[J]. Biotechnology for Biofuels, 2016, 9(1): 1-17.
|
31 |
YU Z Y, LIU L, CHEN J H, et al. Effect of crude glycerol on heterotrophic growth of Chlorella pyrenoidosa and Coccomyxa subellipsoidea C-169[J]. Journal of Applied Phycology, 2018, 30(6): 2989-2996.
|