化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5204-5213.DOI: 10.16085/j.issn.1000-6613.2021-0628
苏允泓1(), 任菊荣2, 孙云娟2(), 蒋剑春1,2(), 杨中志2, 许乐2
收稿日期:
2021-03-28
修回日期:
2021-04-16
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
孙云娟,蒋剑春
作者简介:
苏允泓(1997—),男,硕士研究生,研究方向为生物质预处理及热化学转化。E-mail:基金资助:
SU Yunhong1(), REN Jurong2, SUN Yunjuan2(), JIANG Jianchun1,2(), YANG Zhongzhi2, XU Le2
Received:
2021-03-28
Revised:
2021-04-16
Online:
2021-09-05
Published:
2021-09-13
Contact:
SUN Yunjuan,JIANG Jianchun
摘要:
生物质资源丰富廉价,因清洁可再生、碳中和等优点备受研究者的关注,但是其能量密度低、水分和氧含量高等缺点也限制了其规模化应用;另外,生物质直接气化产生的合成气热值较低,且会产生大量焦油。本文阐述了烘焙预处理对生物质燃料品质的提升以及对气化过程积极的调控作用。文章指出,生物质烘焙后,氧元素含量、H/C和O/C下降,固定碳含量和高位热值增加;可磨性和疏水性得以提高,在一定程度上弥补了烘焙过程的耗能。文中从微观角度对生物质燃料品质的提升进行了解释,并简述了微波烘焙的特点与优势。使用烘焙生物质气化,产生的合成气可燃成分高,且焦油产量有所下降。文章总结后续工作可以考虑从以下三个方面展开,即对“烘焙-利用”过程进行全生命周期评价、利用微波技术更准确地探索温度对烘焙效果的的影响机制、结合烘焙与焦油催化重整技术进一步降低焦油产量。
中图分类号:
苏允泓, 任菊荣, 孙云娟, 蒋剑春, 杨中志, 许乐. 烘焙对生物质理化性质及气化特性的影响[J]. 化工进展, 2021, 40(9): 5204-5213.
SU Yunhong, REN Jurong, SUN Yunjuan, JIANG Jianchun, YANG Zhongzhi, XU Le. Effect of torrefaction on physical and chemical properties and gasification characteristics of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5204-5213.
1 | LIU Z G, HAN G H. Production of solid fuel biochar from waste biomass by low temperature pyrolysis[J]. Fuel, 2015, 158: 159-165. |
2 | LIU Z G, QUEK A, BALASUBRAMANIAN R. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars[J]. Applied Energy, 2014, 113: 1315-1322. |
3 | 中国产业发展促进会生物质能源产业分会. 2019年中国生物质发电产业排名报告[R]. 2019. |
Biomass Energy Industry Branch of China Industry Development Promotion Association. 2019 China biomass power generation industry ranking report[R]. 2019 | |
4 | ZHAO X G, WANG J Y, LIU X M, et al. Focus on situation and policies for biomass power generation in China[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 3722-3729. |
5 | ZHOU Z Q, YIN X L, XU J, et al. The development situation of biomass gasification power generation in China[J]. Energy Policy, 2012, 51: 52-57. |
6 | CONAG A T, VILLAHERMOSA J E R, CABATINGAN L K, et al. Energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere[J]. Energy for Sustainable Development, 2018, 42: 160-169. |
7 | MANATURA K. Inert torrefaction of sugarcane bagasse to improve its fuel properties[J]. Case Studies in Thermal Engineering, 2020, 19: 100623. |
8 | CHEN W H, PENG J H, BI X T. A state-of-the-art review of biomass torrefaction, densification and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 847-866. |
9 | MAMVURA T A, PAHLA G, MUZENDA E. Torrefaction of waste biomass for application in energy production in South Africa[J]. South African Journal of Chemical Engineering, 2018, 25: 1-12. |
10 | CHEN W H, LIN B J, LIN Y Y, et al. Progress in biomass torrefaction: principles, applications and challenges[J]. Progress in Energy and Combustion Science, 2021, 82: 100887. |
11 | KANWAL S, CHAUDHRY N, MUNIR S, et al. Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse)[J]. Waste Management, 2019, 88: 280-290. |
12 | YUE Y, SINGH H, SINGH B, et al. Torrefaction of sorghum biomass to improve fuel properties[J]. Bioresource Technology, 2017, 232: 372-379. |
13 | KULKARNI A, BAKER R, ABDOULMOMINE N, et al. Experimental study of torrefied pine as a gasification fuel using a bubbling fluidized bed gasifier[J]. Renewable Energy, 2016, 93: 460-468. |
14 | TSALIDIS G A, DI MARCELLO M, SPINELLI G, et al. The effect of torrefaction on the process performance of oxygen-steam blown CFB gasification of hardwood and softwood[J]. Biomass and Bioenergy, 2017, 106: 155-165. |
15 | CHEN W H, CHEN C J, HUNG C I, et al. A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor[J]. Applied Energy, 2013, 112: 421-430. |
16 | HE Q, GUO Q H, DING L, et al. CO2 gasification of char from raw and torrefied biomass: reactivity, kinetics and mechanism analysis[J]. Bioresource Technology, 2019, 293: 122087. |
17 | HUANG J C, QIAO Y, WEI X F, et al. Effect of torrefaction on steam gasification of starchy food waste[J]. Fuel, 2019, 253: 1556-1564. |
18 | 蒋好, 朱有健, 刘恒, 等. 秸秆烘焙过程氯、硫释放及AAEMs迁徙转化特性研究[J]. 化工学报, 2020, 71(12): 5785-5792. |
JIANG Hao, ZHU Youjian, LIU Heng, et al. Release and transformation characteristics of chlorine, sulfur and AAEMs during cornstalk torrefaction[J]. CIESC Journal, 2020, 71(12): 5785-5792. | |
19 | 范方宇, 李晗, 邢献军. 温度对玉米秸秆成型颗粒烘焙制备生物炭及其特性的影响[J]. 农业工程学报, 2019, 35(1): 220-226. |
FAN Fangyu, LI Han, XING Xianjun. Effect of temperature on preparation and characteristics of corn straw pellets torrefaction biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 220-226. | |
20 | 陈应泉, 杨海平, 朱波, 等. 农业秸秆烘焙特性及对其产物能源特性的影响[J]. 农业机械学报, 2012, 43(4): 75-82. |
CHEN Yingquan, YANG Haiping, ZHU Bo, et al. Torrefaction of agriculture straw and its effect on material and energy characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 75-82. | |
21 | BRACHI P, CHIRONE R, MICCIO F, et al. Entrained-flow gasification of torrefied tomato peels: combining torrefaction experiments with chemical equilibrium modeling for gasification[J]. Fuel, 2018, 220: 744-753. |
22 | MANATURA K, LU J H, WU K T, et al. Exergy analysis on torrefied rice husk pellet in fluidized bed gasification[J]. Applied Thermal Engineering, 2017, 111: 1016-1024. |
23 | MI B B, LIU Z J, HU W H, et al. Investigating pyrolysis and combustion characteristics of torrefied bamboo, torrefied wood and their blends[J]. Bioresource Technology, 2016, 209: 50-55. |
24 | STRANDBERG M, OLOFSSON I, POMMER L, et al. Effects of temperature and residence time on continuous torrefaction of spruce wood[J]. Fuel Processing Technology, 2015, 134: 387-398. |
25 | CHEN W H, LIN B J, COLIN B, et al. Hygroscopic transformation of woody biomass torrefaction for carbon storage[J]. Applied Energy, 2018, 231: 768-776. |
26 | MANOUCHEHRINEJAD M, GIESEN I VAN, MANI S. Grindability of torrefied wood chips and wood pellets[J]. Fuel Processing Technology, 2018, 182: 45-55. |
27 | WANG L, BARTA-RAJNAI E, SKREIBERG Ø, et al. Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark[J]. Applied Energy, 2018, 227: 137-148. |
28 | IROBA K L, BAIK O D, TABIL L G. Torrefaction of biomass from municipal solid waste fractions II: Grindability characteristics, higher heating value, pelletability and moisture adsorption[J]. Biomass and Bioenergy, 2017, 106: 8-20. |
29 | COLIN B, DIRION J L, ARLABOSSE P, et al. Quantification of the torrefaction effects on the grindability and the hygroscopicity of wood chips[J]. Fuel, 2017, 197: 232-239. |
30 | CHEN D Y, ZHOU J B, ZHANG Q S, et al. Upgrading of rice husk by torrefaction and its influence on the fuel properties[J]. BioResources, 2014, 9(4): 5893-5905. |
31 | CHENG X X, HUANG Z, WANG Z Q, et al. A novel on-site wheat straw pretreatment method: Enclosed torrefaction[J]. Bioresource Technology, 2019, 281: 48-55. |
32 | CARDONA S, GALLEGO L J, VALENCIA V, et al. Torrefaction of eucalyptus-tree residues: a new method for energy and mass balances of the process with the best torrefaction conditions[J]. Sustainable Energy Technologies and Assessments, 2019, 31: 17-24. |
33 | DENG J, WANG G J, KUANG J H, et al. Pretreatment of agricultural residues for co-gasification via torrefaction[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 331-337. |
34 | UEMURA Y, OMAR W N, TSUTSUI T, et al. Torrefaction of oil palm wastes[J]. Fuel, 2011, 90(8): 2585-2591. |
35 | ÁLVAREZ A, NOGUEIRO D, PIZARRO C, et al. Non-oxidative torrefaction of biomass to enhance its fuel properties[J]. Energy, 2018, 158: 1-8. |
36 | BUDDE P K, MEGHA R, PATEL R, et al. Investigating effects of temperature on fuel properties of torrefied biomass for bio-energy systems[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(9): 1140-1148. |
37 | MATALI S, RAHMAN N A, IDRIS S S, et al. Lignocellulosic biomass solid fuel properties enhancement via torrefaction[J]. Procedia Engineering, 2016, 148: 671-678. |
38 | BACH Q V, SKREIBERG Ø. Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 665-677. |
39 | DINJUS E, KRUSE A, TRÖGER N. Hydrothermal carbonization—1. Influence of lignin in lignocelluloses[J]. Chemical Engineering & Technology, 2011, 34(12): 2037-2043. |
40 | LI J B, HENRIKSSON G, GELLERSTEDT G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion[J]. Bioresource Technology, 2007, 98(16): 3061-3068. |
41 | CHEN W H, KUO P C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass[J]. Energy, 2011, 36(2): 803-811. |
42 | RAMOS-CARMONA S, MARTÍNEZ J D, PÉREZ J F. Torrefaction of patula pine under air conditions: a chemical and structural characterization[J]. Industrial Crops and Products, 2018, 118: 302-310. |
43 | CHEN Y Q, LIU B, YANG H P, et al. Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity[J]. Fuel, 2014, 137: 41-49. |
44 | ARPIA A A, CHEN W H, LAM S S, et al. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: a comprehensive review[J]. Chemical Engineering Journal, 2021, 403: 126233. |
45 | 辛子扬, 葛立超, 冯红翠, 等. 生物质微波热解利用技术综述[J]. 热力发电, 2019, 48(7): 19-31. |
XIN Ziyang, GE Lichao, FENG Hongcui, et al. Application of microwave technology in biomass pyrolysis: a review[J]. Thermal Power Generation, 2019, 48(7): 19-31. | |
46 | HO S H, ZHANG C Y, CHEN W H, et al. Characterization of biomass waste torrefaction under conventional and microwave heating[J]. Bioresource Technology, 2018, 264: 7-16. |
47 | HUANG Y F, CHEN W R, CHIUEH P T, et al. Microwave torrefaction of rice straw and pennisetum[J]. Bioresource Technology, 2012, 123: 1-7. |
48 | AMER M, NOUR M, AHMED M, et al. The effect of microwave drying pretreatment on dry torrefaction of agricultural biomasses[J]. Bioresource Technology, 2019, 286: 121400. |
49 | 王贤华, 陈汉平, 张世红, 等. 生物质微波干燥及其对热解的影响[J]. 燃料化学学报, 2011, 39(1): 14-20. |
WANG Xianhua, CHEN Hanping, ZHANG Shihong, et al. Microwave drying of biomass and its effect on pyrolysis characteristics[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1): 14-20. | |
50 | LIU H L, JIAQIANG E, MA X Q, et al. Influence of microwave drying on the combustion characteristics of food waste[J]. Drying Technology, 2016, 34(12): 1397-1405. |
51 | 陈登宇. 干燥和烘焙预处理制备高品质生物质原料的基础研究[D]. 合肥: 中国科学技术大学, 2013. |
CHEN Dengyu. Fundamental study on drying and torrefaction pretreatments to produce high high-quality biomass feedstok[D]. Hefei: University of Science and Technology of China, 2013. | |
52 | 肖黎. 加压烘焙预处理对生物质气化特性的影响[D]. 武汉: 华中科技大学, 2016. |
XIAO Li. Influence of pressurized torrefaction pretreatments on gasification characteristics of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
53 | 孙立, 张晓东. 生物质热解气化原理与技术[M]. 北京: 化学工业出版社, 2013. |
SUN Li, ZHANG Xiaodong. The principle and technology of biomass pyrolysis and gasification [M]. Beijing: Chemical Industry Press, 2013. | |
54 | 吕仲明, 徐盛林. 生物质气化技术的研究现状[J]. 中国环保产业, 2018(9): 32-35. |
Zhongming LYU, XU Shenglin. Research status of biomass gasification technology[J]. China Environmental Protection Industry, 2018(9): 32-35. | |
55 | 陈青, 周劲松, 刘炳俊, 等. 烘焙预处理对生物质气化工艺的影响[J]. 科学通报, 2010, 55(36): 3437-3443. |
CHEN Qing, ZHOU Jinsong, LIU Bingjun, et al. Influence of torrefaction pretreatment on biomass gasification technology [J]. Chinese Science Bulletin, 2010, 55(36): 3437-3443. | |
56 | 杨晴, 梅艳阳, 郝宏蒙, 等. 烘焙对生物质热解产物特性的影响[J]. 农业工程学报, 2013, 29(20): 214-219. |
YANG Qing, MEI Yanyang, HAO Hongmeng, et al. Effect of torrefaction on characteristics of pyrolytic products of biomass[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(20): 214-219. | |
57 | 陈应泉, 王贤华, 李开志, 等. 温度对棉杆热解多联产过程中产物特性的影响[J]. 中国电机工程学报, 2012, 32(17): 117-124, 153. |
CHEN Yingquan, WANG Xianhua, LI Kaizhi, et al. Effect of temperature on product property during biomass ploy-generation based on cotton stalk pyrolysis[J]. Proceedings of the CSEE, 2012, 32(17): 117-124, 153. | |
58 | DI MARCELLO M, TSALIDIS G A, SPINELLI G, et al. Pilot scale steam-oxygen CFB gasification of commercial torrefied wood pellets. The effect of torrefaction on the gasification performance[J]. Biomass and Bioenergy, 2017, 105: 411-420. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[3] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[4] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[5] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[6] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[7] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[8] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[9] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[12] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[13] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[14] | 郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229. |
[15] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |