化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5195-5203.DOI: 10.16085/j.issn.1000-6613.2021-0245
方书起1,2,3(), 王毓谦1,3, 李攀1,2,3(), 宋建德2, 白净1,2,3, 常春2,3
收稿日期:
2021-02-01
修回日期:
2021-06-07
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
李攀
作者简介:
方书起(1964—),男,教授,研究方向为生物质资源化利用。E-mail:基金资助:
FANG Shuqi1,2,3(), WANG Yuqian1,3, LI Pan1,2,3(), SONG Jiande2, BAI Jing1,2,3, CHANG Chun2,3
Received:
2021-02-01
Revised:
2021-06-07
Online:
2021-09-05
Published:
2021-09-13
Contact:
LI Pan
摘要:
催化热解目前逐渐成为生物质转化利用技术的主要研究方向,相比常规热解,催化热解可以对生物油进行有效提质并且定向产生高值化产品。本文通过对近年来新兴的催化剂进行综述,包括分子筛类催化剂(ZSM-5、HZSM-5、USY等)、炭基催化剂、金属氧化物、白云石、整体式催化剂等,了解了目前生物质热解利用中催化剂领域内的最新研究进展。文中指出,良好的催化剂是保证反应顺利进行的关键,不同催化剂定向产生的高值化产品也有所不同,因此催化剂的正确选择对于生物油的提质起着重大作用。根据目前领域内所研究内容,本文还对各类催化剂的优缺点、产物特性进行了详细比较,并针对该技术现有问题提出了部分建议并进行展望,为以后生物质热解领域催化剂的研究提供了重要的理论依据。
中图分类号:
方书起, 王毓谦, 李攀, 宋建德, 白净, 常春. 生物质热解利用中主要催化剂的研究进展[J]. 化工进展, 2021, 40(9): 5195-5203.
FANG Shuqi, WANG Yuqian, LI Pan, SONG Jiande, BAI Jing, CHANG Chun. Research progress of main catalyst in biomass pyrolysis and utilization[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5195-5203.
1 | 李明. 热解稻壳炭的高值化利用研究[D]. 合肥: 中国科学技术大学, 2016. |
LI Ming. Research of high-value utilization of pyrolyzed rice husk[D]. Hefei: University of Science and Technology of China, 2016. | |
2 | Energy Information Administration and United States (2019). International energy outlook[EB/OL]. . |
3 | 余智涵, 苏世伟. 生物质能源产业发展研究动态与展望[J]. 中国林业经济, 2019(3): 5-7, 12. |
YU Zhihan, SU Shiwei. Development trends and prospects of biomass energy industry[J]. China Forestry Economics, 2019(3): 5-7, 12. | |
4 | ELLABBAN O, ABU-RUB H, DE BLAABJERG F. Renewable energy resources: current status, future prospects and their enabling technology[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 748-764. |
5 | 胡二峰, 赵立欣, 吴娟, 等. 生物质热解影响因素及技术研究进展[J]. 农业工程学报, 2018, 34(14): 212-220. |
HU Erfeng, ZHAO Lixin, WU Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 212-220. | |
6 | 骆仲泱, 王树荣, 王琦. 生物质液化原理及技术应用[M]. 北京: 化学工业出版社, 2013: 28-29. |
LUO Zhongyang, WANG Shurong, WANG Qi. Biomass utilization for liquid fuel production[M]. Beijing: Chemical Industry Press, 2013: 28-29. | |
7 | BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
8 | PARK H J, JEON J K, SUH D J, et al. Catalytic vapor cracking for improvement of bio-oil quality[J]. Catalysis Surveys from Asia, 2011, 15(3): 161-180. |
9 | XIU S N, SHAHBAZI A. Bio-oil production and upgrading research: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4406-4414. |
10 | 王树荣, 骆仲泱, 谭洪, 等. 生物质热裂解生物油特性的分析研究[J]. 工程热物理学报, 2004, 25(6): 1049-1052. |
WANG Shurong, LUO Zhongyang, TAN Hong, et al. The analyses of characteristics of bio-oil produced from biomass by flash pyrolysis[J]. Journal of Engineering Thermophysics, 2004, 25(6): 1049-1052. | |
11 | LIU C, WANG H, KARIM A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. |
12 | RAHMAN M M, LIU R H, CAI J M. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil: a review[J]. Fuel Processing Technology, 2018, 180: 32-46. |
13 | GALADIMA A, MURAZA O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review[J]. Energy Conversion and Management, 2015, 105: 338-354. |
14 | WANG Y P, JIANG L, DAI L L, et al. Microwave-assisted catalytic co-pyrolysis of soybean straw and soapstock for bio-oil production using SiC ceramic foam catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 76-81. |
15 | MORGAN H M, BU Q, LIANG J H, et al. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals[J]. Bioresource Technology, 2017, 230: 112-121. |
16 | 杨仲禹. 微波强化吸波材料吸-脱附/催化氧化气相甲苯研究[D]. 北京: 北京科技大学, 2019. |
YANG Zhongyu. Studies on adsorption-desorption/catalytic oxidation of absorbing materials under microwave radiation for purification of toluene vapor[D]. Beijing: University of Science and Technology Beijing, 2019. | |
17 | 陆强. 生物质选择性热解液化的研究[D]. 合肥: 中国科学技术大学, 2010. |
LU Qiang. Selective fast pyrolysis of biomass[D]. Hefei: University of Science and Technology of China, 2010. | |
18 | DING Y L, WANG H Q, XIANG M, et al. The effect of Ni-ZSM-5 catalysts on catalytic pyrolysis and hydro-pyrolysis of biomass[J]. Frontiers in Chemistry, 2020, 8: 790. |
19 | LI Q Y, FARAMARZI A, ZHANG S, et al. Progress in catalytic pyrolysis of municipal solid waste[J]. Energy Conversion and Management, 2020, 226: 113525. |
20 | ZHOU Y C, CHEN Z Z, GONG H J, et al. Study on the feasibility of using monolithic catalyst in the in situ catalytic biomass pyrolysis for syngas production[J]. Waste Management, 2021, 120: 10-15. |
21 | 李攀. 生物质催化热解制备高选择性芳香烃生物油的实验研究[D]. 武汉: 华中科技大学, 2016. |
LI Pan. Experimental study on preparation of bio-oil with highly selective aromatics by catalytic pyrolysis of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
22 | CHEN Y W, AANJANEYA K, ATREYA A. Catalytic pyrolysis of centimeter-scale pinewood particles to produce hydrocarbon fuels: the effect of catalyst temperature and regeneration[J]. Energy & Fuels, 2020, 34(2): 1977-1983. |
23 | SHARMA R K, BAKHSHI N N. Catalytic upgrading of biomass-derived oils to transportation fuels and chemicals[J]. The Canadian Journal of Chemical Engineering, 1991, 69(5): 1071-1081. |
24 | 曾媛, 王允圃, 张淑梅, 等. 生物质微波热解制备液体燃料和化学品的研究进展[J]. 化工进展, 2021, 40(6): 3151-3162. |
ZENG Yuan, WANG Yunpu, ZHANG Shumei, et al. Research progress in preparation of liquid fuels and chemicals by microwave pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3151-3162. | |
25 | DAI L L, WANG Y P, LIU Y H, et al. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass[J]. Science of the Total Environment, 2020, 749: 142386. |
26 | 方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645. |
FANG Shuqi, SHI Chong, LI Pan, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645. | |
27 | JAE J, TOMPSETT G A, FOSTER A J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. Journal of Catalysis, 2011, 279(2): 257-268. |
28 | VALLE B, GAYUBO A G, AGUAYO A T, et al. Selective production of aromatics by crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst[J]. Energy & Fuels, 2010, 24(3): 2060-2070. |
29 | LIU Q, WANG J Z, ZHOU J, et al. Promotion of monocyclic aromatics by catalytic fast pyrolysis of biomass with modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 104964. |
30 | HUYNH T M, ARMBRUSTER U, POHL M M, et al. Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic nickel-based catalysts[J]. ChemCatChem, 2014, 6(7): 1940-1951. |
31 | 石坤, 仲兆平, 王佳, 等. 改性HZSM-5催化微波预处理竹木快速热解[J]. 化工进展, 2018, 37(6): 2175-2181. |
SHI Kun, ZHONG Zhaoping, WANG Jia, et al. Catalytic fast pyrolysis of bamboo pretreated by microwave using modified HZSM-5 catalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2175-2181. | |
32 | ABDULLAH T A, ZAIDI H A. Effect of ZnO and NiO modified HZSM-5 catalyst for ethanol conversion to hydrocarbons[J]. International Journal of Chemical Engineering and Applications, 2016, 7(3): 151-155. |
33 | CHENG S Y, WEI L, ZHAO X H, et al. Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor[J]. AIMS Energy, 2015, 3(2): 227-240. |
34 | 屈丹龙, 李毅. 含油污泥高值转化过程Mo基负载催化剂的研究[J]. 应用化工, 2021, 50(2): 383-387. |
QU Danlong, LI Yi. The preparation of Mo based catalysts for high value catalytic pyrolysis of oily sludge[J]. Applied Chemical Industry, 2021, 50(2): 383-387. | |
35 | SUN L Z, WANG Z B, CHEN L, et al. Catalytic fast pyrolysis of biomass into aromatic hydrocarbons over Mo-modified ZSM-5 catalysts[J]. Catalysts, 2020, 10(9): 1051. |
36 | PARK Y K, YOO M L, JIN S H, et al. Catalytic fast pyrolysis of waste pepper stems over HZSM-5[J]. Renewable Energy, 2015, 79: 20-27. |
37 | YANG Z X, KUMAR A, APBLETT A. Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 484-492. |
38 | IISA K, KIM Y, ORTON K A, et al. Ga/ZSM-5 catalyst improves hydrocarbon yields and increases alkene selectivity during catalytic fast pyrolysis of biomass with co-fed hydrogen[J]. Green Chemistry, 2020, 22(8): 2403-2418. |
39 | CHE Q F, YANG M J, WANG X H, et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresource Technology, 2019, 278: 248-254. |
40 | LY H V, PARK J W, KIM S S, et al. Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil[J]. Renewable Energy, 2020, 149: 1434-1445. |
41 | XUE X F, LIU Y W, WU L, et al. Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons[J]. Bioresource Technology, 2019, 289: 121691. |
42 | 吴承辉, 杜美利, 程序, 等. Co、Mg改性USY对树皮煤热解焦油产物分布的影响[J]. 现代化工, 2021, 41(1): 108-112. |
WU Chenghui, DU Meili, CHENG Xu, et al. Effects of Co and Mg modified USY on tar product distribution of bark coal pyrolysis[J]. Modern Chemical Industry, 2021, 41(1): 108-112. | |
43 | WEI B Y, JIN L J, WANG D C, et al. Effect of different acid-leached USY zeolites on in situ catalytic upgrading of lignite tar[J]. Fuel, 2020, 266: 117089. |
44 | WANG J, JIANG J C, WANG X B, et al. Enhanced BTEX formation via catalytic fast pyrolysis of styrene-butadiene rubber: comparison of different catalysts[J]. Fuel, 2020, 278: 118322. |
45 | IMRAN A, BRAMER E A, SESHAN K, et al. An overview of catalysts in biomass pyrolysis for production of biofuels[J]. Biofuel Research Journal, 2018, 5(4): 872-885. |
46 | XU W, GAO L J, YANG H M, et al. Catalytic pyrolysis of distilled lemon grass over Ni-Al based oxides supported on MCM-41[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. DOI: 10.1080/15567036.2020.1814905. |
47 | SHI Y, LIU C, ZHUO J K, et al. Investigation of a Ni-modified MCM-41 catalyst for the reduction of oxygenates and carbon deposits during the co-pyrolysis of cellulose and polypropylene[J]. ACS Omega, 2020, 5(32): 20299-20310. |
48 | 赵锦波, 苟鑫, 陈皓, 等. 多级孔分子筛在生物质催化热裂解制备芳烃中的研究进展[J]. 生物加工过程, 2019, 17(4): 329-341. |
ZHAO Jinbo, GOU Xin, CHEN Hao, et al. Recent advances in aromatic production from biomass via catalytic fast pyrolysis over hierarchical zeolite[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(4): 329-341. | |
49 | JIA L Y, RAAD M, HAMIEH S, et al. Catalytic fast pyrolysis of biomass: superior selectivity of hierarchical zeolites to aromatics[J]. Green Chemistry, 2017, 19(22): 5442-5459. |
50 | QIAO K, SHI X, ZHOU F, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A: General, 2017, 547: 274-282. |
51 | 郑云武, 杨晓琴, 沈华杰, 等. 改性微-介孔催化剂的制备及其催化生物质热解制备芳烃[J]. 农业工程学报, 2018, 34(20): 240-249. |
ZHENG Yunwu, YANG Xiaoqin, SHEN Huajie, et al. Preparation of modified hierarchical HZSM-5 catalyst and its application on pyrolysis of biomass to enhance aromatics products[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 240-249. | |
52 | HU C S, ZHANG H Y, XIAO R. Catalytic fast pyrolysis of biomass over core-shell HZSM-5@silicalite-1 in a bench-scale two-stage fluidized-bed/fixed-bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 27-34. |
53 | 李小华, 胡超, 张小雷, 等. La改性MCM-41在线催化提质生物油研究[J]. 农业机械学报, 2018, 49(7): 296-302. |
LI Xiaohua, HU Chao, ZHANG Xiaolei, et al. In-suit catalytic online upgrading of bio-oil over La/MCM-41[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 296-302. | |
54 | GUO F Q, LI X L, LIU Y, et al. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts[J]. Energy Conversion and Management, 2018, 167: 81-90. |
55 | BHANDARI P N, KUMAR A, BELLMER D D, et al. Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas[J]. Renewable Energy, 2014, 66: 346-353. |
56 | DAI L L, ZENG Z H, TIAN X J, et al. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2019, 143: 104691. |
57 | 董庆, 牛淼淼, 毕冬梅, 等. 微波辐照下活性炭载铁催化剂催化热解竹材特性研究[J]. 农业工程学报, 2019, 35(2): 235-241. |
DONG Qing, NIU Miaomiao, BI Dongmei, et al. Study on microwave pyrolysis properties of bamboo by using activated carbon-supported iron catalyst[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 235-241. | |
58 | NHUCHHEN D R, AFZAL M T, DREISE T, et al. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor[J]. Biomass and Bioenergy, 2018, 119: 293-303. |
59 | 杨晓霞, 汪自典, 付峰, 等. 炭基催化剂对煤热解油气品质的影响及机理[J]. 煤炭转化, 2019, 42(3): 10-17. |
YANG Xiaoxia, WANG Zidian, FU Feng, et al. Effects of carbon-based catalysts on quality of coal tar and gas and its mechanism[J]. Coal Conversion, 2019, 42(3): 10-17. | |
60 | 牛永红, 张骏, 蔡尧尧, 等. 基于载La半焦基催化的松木热解试验[J]. 农业机械学报, 2021, 52(1): 286-293. |
NIU Yonghong, ZHANG Jun, CAI Yaoyao, et al. Experiment on pine pyrolysis based on semi-coke catalyzed by La[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 286-293. | |
61 | 庞赟佶, 刘心明, 陈义胜, 等. 生物炭负载Ca和Fe催化玉米秸秆热解挥发分重整提高产气率[J]. 农业工程学报, 2019, 35(3): 211-217. |
PANG Yunji, LIU Xinming, CHEN Yisheng, et al. Catalytic reforming of volatiles in pyrolysis by using biomass carbon particle loading Ca and Fe and improving biogas yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 211-217. | |
62 | LI J, DAI J J, LIU G Q, et al. Biochar from microwave pyrolysis of biomass: a review[J]. Biomass and Bioenergy, 2016, 94: 228-244. |
63 | LUQUE R, MENÉNDEZ J A, ARENILLAS A, et al. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? [J]. Energy Environ Sci, 2012, 5(2): 5481-5488. |
64 | SHI K Q, YAN J F, MENÉNDEZ J A, et al. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming[J]. Frontiers in Chemistry, 2020, 8: 3. |
65 | DAI L L, ZENG Z H, YANG Q, et al. Synthesis of iron nanoparticles-based hydrochar catalyst for ex-situ catalytic microwave-assisted pyrolysis of lignocellulosic biomass to renewable phenols[J]. Fuel, 2020, 279: 118532. |
66 | 孟光范, 孙来芝, 陈雷, 等. 生物质催化热解技术研究进展[J]. 山东科学, 2016, 29(4): 50-54, 67. |
MENG Guangfan, SUN Laizhi, CHEN Lei, et al. Research advances of biomass catalytic pyrolysis[J]. Shandong Science, 2016, 29(4): 50-54, 67. | |
67 | BHOI P R, OUEDRAOGO A S, SOLOIU V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109676. |
68 | ZHANG C T, ZHANG L J, LI Q Y, et al. Catalytic pyrolysis of poplar wood over transition metal oxides: correlation of catalytic behaviors with physiochemical properties of the oxides[J]. Biomass and Bioenergy, 2019, 124: 125-141. |
69 | MISKOLCZI N, ATEŞ F, BORSODI N. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: Contaminants, char and pyrolysis oil properties[J]. Bioresource Technology, 2013, 144: 370-379. |
70 | CAO Y L, ZHANG H P, LIU K K, et al. Biowaste-derived bimetallic Ru-MoOx catalyst for the direct hydrogenation of furfural to tetrahydrofurfuryl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12858-12866. |
71 | 毕冬梅, 张凯真, 易维明, 等. 白云石基多孔陶瓷负载Al2O3催化生物质热解试验[J]. 农业机械学报, 2019, 50(10): 315-322. |
BI Dongmei, ZHANG Kaizhen, YI Weiming, et al. Catalytic pyrolysis of biomass with porous ceramic loading aluminum oxide[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 315-322. | |
72 | LY H V, LIM D H, SIM J W, et al. Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst[J]. Energy, 2018, 162: 564-575. |
73 | 牛永红, 吴会军, 王忠胜, 等. 白云石催化成型松木的热解动力学研究[J]. 应用化工, 2018, 47(2): 254-257, 267. |
NIU Yonghong, WU Huijun, WANG Zhongsheng, et al. Research on pyrolysis dynamic of pine sawdust catalyzed by dolomite[J]. Applied Chemical Industry, 2018, 47(2): 254-257, 267. | |
74 | KONG X L, QIU M H, WANG A R, et al. Influence of alumina binders on adhesion and cohesion during preparation of Cu-SAPO-34/monolith catalysts[J]. International Journal of Applied Ceramic Technology, 2018, 15(6): 1490-1501. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |