化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5180-5194.DOI: 10.16085/j.issn.1000-6613.2020-2436
收稿日期:
2020-12-03
修回日期:
2021-01-06
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
王树刚
作者简介:
高迪(1997—),女,硕士研究生,研究方向为多相流及微通道换热。E-mail:基金资助:
GAO Di(), WANG Shugang(), CAI Xiaoxu, WANG Jihong, LI Yixuan
Received:
2020-12-03
Revised:
2021-01-06
Online:
2021-09-05
Published:
2021-09-13
Contact:
WANG Shugang
摘要:
相变微胶囊是一种性能良好、稳定性强的相变储能材料,其热导率偏低,但对相变微胶囊进行改性以及优化换热条件可以提高热导率。本文系统地介绍了相变微胶囊与改性相变微胶囊的制备方法,以及两者的区别。文章指出,对比分析可知,原位聚合法是制备改性相变微胶囊最常用的方法,对壁材进行改性是最常用的改性方法,并且在众多改性材料中氧化石墨烯是一种高导热、力学性能优异、稳定性强的改性材料。同时,文中对相变微胶囊和改性相变微胶囊在微通道换热器中的应用进行概述与总结,指出其中存在的问题:相变微胶囊与微通道换热器的结合,在提升换热效果的同时还存在着增加流动阻力和压降的问题。因此需要确定悬浮液流动的临界速度,充分发挥相变微胶囊与微通道换热器的优势。
中图分类号:
高迪, 王树刚, 才晓旭, 王继红, 李宜轩. 相变微胶囊的制备及其在微通道的应用进展[J]. 化工进展, 2021, 40(9): 5180-5194.
GAO Di, WANG Shugang, CAI Xiaoxu, WANG Jihong, LI Yixuan. Preparation of microencapsulated phase change material and its application in microchannels: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5180-5194.
1 | IWARO J, MWASHA A. A review of building energy regulation and policy for energy conservation in developing countries[J]. Energy Policy, 2010, 38(12): 7744-7755. |
2 | ABDUL MUJEEBU M, ALSHAMRANI O S. Prospects of energy conservation and management in buildings - The Saudi Arabian scenario versus global trends[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1647-1663. |
3 | 闫云飞, 张智恩, 张力, 等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(S1): 47-56. |
YAN Yunfei, ZHANG Zhien, ZHANG Li, et al. Application and utilization technology of solar energy[J]. Acta Energiae Solaris Sinica, 2012, 33(S1): 47-56. | |
4 | 陈亮, 刘道平, 杨亮. 相变储能过程传热强化技术研究进展[J]. 化工进展, 2017, 36(S1): 291-296. |
CHEN Liang, LIU Daoping, YANG Liang. Progress of heat transfer enhancement technology in phase change energy storage process[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 291-296. | |
5 | ZONDAG H, KIKKERT B, SMEDING S, et al. Prototype thermochemical heat storage with open reactor system[J]. Applied Energy, 2013, 109: 360-365. |
6 | 刘臣臻. 相变微胶囊储能过程传热与流动特性研究[D]. 徐州: 中国矿业大学, 2017. |
LIU Chenzhen. Study on heat transfer and flow characteristics of microencapsulated phase change material during thermal energy storage process[D]. Xuzhou: China University of Mining and Technology, 2017. | |
7 | 张丽芝, 张庆. 相变贮热材料[J]. 化工新型材料, 1999(2): 19-21. |
ZHANG Lizhi, ZHANG Qing. PCM used as heat storing material[J]. New Chemical Materials, 1999(2): 19-21. | |
8 | CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695. |
9 | SHCHUKINA E M, GRAHAM M, ZHENG Z, et al. Nanoencapsulation of phase change materials for advanced thermal energy storage systems[J]. Chemical Society Reviews, 2018, 47(11): 4156-4175. |
10 | ISHAK S, MANDAL S, LEE H S, et al. Microencapsulation of stearic acid with SiO2 shell as phase change material for potential energy storage[J]. Scientific Reports, 2020, 10: 15023. |
11 | NOMURA T, YOOLERD J, SHENG N, et al. Microencapsulation of eutectic and hyper-eutectic Al-Si alloy as phase change materials for high-temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 187: 255-262. |
12 | KHAN M, ZHAO N, XU T. Numerical assessment on fin design parameters employed for augmentation of natural convection and fluid flow in a horizontal latent heat thermal energy storage unit[J]. Engineering, 2019, 11(7): 407-428. |
13 | ZHANG X, WEN R, HUANG Z, et al. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials[J]. Energy and Buildings, 2017, 149: 463-470. |
14 | KALBASI R, AFRAND M, ALSARRAF J, et al. Studies on optimum fins number in PCM-based heat sinks[J]. Energy, 2019, 171: 1088-1099. |
15 | GIBBS B F, KERMASHA S, ALLI I, et al. Encapsulation in the food industry: a review[J]. International Journal of Food Sciences and Nutrition, 1999, 50(3): 213-224. |
16 | KHAN Z, KHAN Z, GHAFOOR A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility[J]. Energy Conversion and Management, 2016, 115: 132-158. |
17 | KARTHIKEYAN M, RAMACHANDRAN T. Review of thermal energy storage of micro- and nanoencapsulated phase change materials[J]. Materials Research Innovations, 2014, 18(7): 541-554. |
18 | 喻胜飞, 罗武生. 石蜡/聚脲相变微胶囊的制备及表征[J]. 材料工程, 2015, 43(7): 100-104. |
YU Shengfei, LUO Wusheng. Preparation and characterization of microencapsulated paraffin/polyurea phase change materials[J]. Journal of Materials Engineering, 2015, 43(7): 100-104. | |
19 | 汪婷, 王鸿博, 傅佳佳, 等. MUF/十八烷相变微胶囊的制备与性能研究[J]. 化工新型材料, 2020, 48(6): 211-215. |
WANG Ting, WANG Hongbo, FU Jiajia, et al. Synthesis and property of MUF/octadecane PCM[J]. New Chemical Materials, 2020, 48(6): 211-215. | |
20 | 吴梓敏, 黄雪, 崔英德, 等. 脂肪酸微胶囊型相变材料的制备及表征[J]. 材料导报, 2015, 29(14): 73-76. |
WU Zimin, HUANG Xue, CUI Yingde, et al. Preparation and characterization of microcapsule with fatty acid phase change materials[J]. Materials Review, 2015, 29(14): 73-76. | |
21 | 杨颖旎, 尚丽娜, 赵俊淇, 等. 聚氨酯相变储能微胶囊的制备及性能表征[J]. 化工新型材料, 2019, 47(12): 91-94. |
YANG Yingni, SHANG Lina, ZHAO Junqi, et al. Preparation and characterization of polyurethane phase change energy storage microcapsules[J]. New Chemical Materials, 2019, 47(12): 91-94. | |
22 | 王轩, 朱金华. 石蜡相变微胶囊及石蜡相变复合材料研究进展[J]. 材料开发与应用, 2013, 28(6): 80-85. |
WANG Xuan, ZHU Jinhua. Research progresses in microencapsulated paraffin phase change materials and paraffin phase change composite materials[J]. Development and Application of Materials, 2013, 28(6): 80-85. | |
23 | KARAIPEKLI A, SARI A, KAYGUSUZ K. Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 31(10): 814-823. |
24 | HASAN A, SAYIGH A A. Some fatty acids as phase-change thermal energy storage materials[J]. Renewable Energy, 1994, 4(1): 69-76. |
25 | SAHAN N, PAKSOY H. Designing behenic acid microcapsules as novel phase change material for thermal energy storage applications at medium temperature[J]. International Journal of Energy Research, 2020, 44(5): 3922-3933. |
26 | 顾庆军, 费华, 王林雅, 等. 脂肪酸相变储能材料热性能研究进展[J]. 化工进展, 2019, 38(6): 2825-2834. |
GU Qingjun, FEI Hua, WANG Linya, et al. Research progress on thermal properties of fatty acid phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2825-2834. | |
27 | YANG Y, XIA R, ZHAO J, et al. Preparation and thermal properties of microencapsulated polyurethane and double-component poly(ethylene glycol) as phase change material for thermal energy storage by interfacial polymerization[J]. Energy & Fuels, 2020, 34(1): 1024-1032. |
28 | SARIER N, ONDER E. Thermal characteristics of polyurethane foams incorporated with phase change materials[J]. Thermochimica Acta, 2007, 454(2): 90-98. |
29 | 李开红, 何垒垒, 王雪莹, 等. Na2SO4·10H2O@SiO2微胶囊的制备及相变过程研究[J]. 现代化工, 2020, 40(11): 98-103. |
LI Kaihong, HE Leilei, WANG Xueying, et al. Preparation and phase change process of Na2SO4·10H2O@SiO2 microcapsules[J]. Modern Chemical Industry, 2020, 40(11): 98-103. | |
30 | GUO Q, WANG T. Preparation and characterization of sodium sulfate/silica composite as a shape-stabilized phase change material by sol-gel method[J]. Chinese Journal of Chemical Engineering, 2014, 22(3): 360-364. |
31 | MARUOKA N, SATO K, YAGI J, et al. Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane[J]. ISIJ International, 2002, 42(2): 215-219. |
32 | SCHMIT H, RATHGEBER C, HOOCK P, et al. Critical review on measured phase transition enthalpies of salt hydrates in the context of solid-liquid phase change materials[J]. Thermochimica Acta, 2020, 683: 178477. |
33 | 鲍家明, 邹得球, 朱思贤, 等. 高温相变材料胶囊化及应用研究进展[J]. 化工进展, 2020, 39(7): 2687-2697. |
BAO Jiaming, ZOU Deqiu, ZHU Sixian, et al. Research progress on high temperature phase change materials encapsulation and application[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2687-2697. | |
34 | SARI A, ALKAN C, OZCAN A N. Synthesis and characterization of micro/nano capsules of PMMA/capric-stearic acid eutectic mixture for low temperature-thermal energy storage in buildings[J]. Energy and Buildings, 2015, 90: 106-113. |
35 | 杨建, 张国庆, 刘国金, 等. 复合相变微胶囊制备及其在棉织物上的应用[J]. 纺织学报, 2019, 40(10): 127-133. |
YANG Jian, ZHANG Guoqing, LIU Guojin, et al. Preparation of composite phase change microcapsules and its application on cotton fabrics[J]. Journal of Textile Research, 2019, 40(10): 127-133. | |
36 | GRAHAM M, COCA-CLEMENTE J A, SHCHUKINA E, et al. Nanoencapsulated crystallohydrate mixtures for advanced thermal energy storage[J]. Journal of Materials Chemistry A, 2017, 5(26): 13683-13691. |
37 | GIRO-PALOMA J, MARTINEZ M, CABEZA L F, et al. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1059-1075. |
38 | CARDENAS-RAMIREZ C, JARAMILLO F, GOMEZ M. Systematic review of encapsulation and shape-stabilization of phase change materials[J]. Journal of Energy Storage, 2020, 30: 101495. |
39 | CHEN Z, FANG G. Preparation and heat transfer characteristics of microencapsulated phase change material slurry: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4624-4632. |
40 | 朱建平, 侯欢欢, 田梦迪, 等. 相变微胶囊制备方法研究进展[J]. 化工新型材料, 2016, 44(8): 1-3. |
ZHU Jianping, HOU Huanhuan, TIAN Mengdi, et al. Research progress on the preparation of phase change material microcapsule[J]. New Chemical Materials, 2016, 44(8): 1-3. | |
41 | 海彬, 姜高亮, 芦雷鸣, 等. 复凝聚法制备石蜡相变储能微胶囊及其性能研究[J]. 应用化工, 2018, 47(1): 10-13, 17. |
Bin HAI, JIANG Gaoliang, LU Leiming, et al. Preparation and properties of microencapsulated paraffin phase change material by complex coacervation[J]. Applied Chemical Industry, 2018, 47(1): 10-13, 17. | |
42 | TIAN Y, LIU Y, ZHANG L, et al. Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124216. |
43 | BUTSTRAEN C, SALAUN F. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan[J]. Carbohydrate Polymers, 2014, 99: 608-616. |
44 | 黄全国, 张凯, 杨文彬, 等. 三聚氰胺-甲醛相变微胶囊制备及性能[J]. 高分子材料科学与工程, 2014, 30(3): 34-38. |
HUANG Quanguo, ZHANG Kai, YANG Wenbin, et al. Preparation and property of melamine-formaldehyde phase change microcapsules[J]. Polymeric Materials Science & Engineering, 2014, 30(3): 34-38. | |
45 | 倪卓, 石开勇, 黄志斌, 等. UF/石蜡储能微胶囊的制备与表征[J]. 深圳大学学报(理工版), 2010, 27(1): 65-69. |
NI Zhuo, SHI Kaiyong, HUANG Zhibin, et al. Synthsis and characterization of UF/paraffin PCM microcapsules[J]. Journal of Shenzhen University(Science and Engineering), 2010, 27(1): 65-69. | |
46 | 黄全国, 杨文彬, 张凯, 等. 聚苯乙烯/石蜡相变储能微胶囊的制备和表征[J]. 功能材料, 2014, 45(13): 13131-13134. |
HUANG Quanguo, YANG Wenbin, ZHANG Kai, et al. Preparation and characterization of polystyrene /paraffin phase change microcapsules for energy storage[J]. Journal of Functional Materials, 2014, 45(13): 13131-13134. | |
47 | LASHGARI S, ARABI H, MAHDAVIAN A R, et al. Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell[J]. Applied Energy, 2017, 190: 612-622. |
48 | FELIX DE CASTRO P, SHCHUKIN D G. New polyurethane/docosane microcapsules as phase-change materials for thermal energy storage[J]. Chemistry, 2015, 21(31): 11174-11179. |
49 | 宋云飞, 娄鸿飞, 刘思敏, 等. 纳米SiO2改性脲醛树脂/十二醇相变微胶囊的制备及性能[J]. 现代化工, 2018, 38(4): 73-76. |
SONG Yunfei, LOU Hongfei, LIU Simin, et al. Preparation and property of nano-silica modified urea-formaldehyde resin/dodecanol microencapsulated phase change materials[J]. Modern Chemical Industry, 2018, 38(4): 73-76. | |
50 | 王鑫, 方建华, 吴江, 等. 改性SiO2杂化层相变微胶囊的制备与表征[J]. 化工进展, 2020, 39(4): 1431-1438. |
WANG Xin, FANG Jianhua, WU Jiang, et al. Preparation and characterization of SiO2 hybrid phase change microcapsules[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1431-1438. | |
51 | KHAKZAD F, ALINEJAD Z, SHIRIN-ABADI A R, et al. Optimization of parameters in preparation of PCM microcapsules based on melamine formaldehyde through dispersion polymerization[J]. Colloid and Polymer Science, 2014, 292(2): 355-368. |
52 | FANG Y, ZOU T, LIANG X, et al. Self-assembly synthesis and properties of microencapsulated n‑tetradecane phase change materials with a calcium carbonate shell for cold energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 4(5): 3074-3080. |
53 | LI C, HE G, YAN H, et al. Synthesis of microencapsulated stearic acid with amorphous TiO2 as shape-stabilized PCMs for thermal energy storage[J]. Energy Procedia, 2018, 152: 390-394. |
54 | DHIVYA S, HUSSAIN S I, KALAISELVAM S. Novel metal coated nanocapsules of ethyl esters fatty acid eutectic mixture as phase change material with enhanced thermal conductivity for energy storage applications[J]. Thermochimica Acta, 2020, 687: 178581. |
55 | YANG W, ZHANG L, GUO Y, et al. Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity[J]. Journal of Materials Science, 2018, 53(4): 2566-2575. |
56 | BORREGUERO A M, VALVERDE J L, RODRIGUEZ J F, et al. Synthesis and characterization of microcapsules containing Rubitherm®RT27 obtained by spray drying[J]. Chemical Engineering Journal, 2011, 166(1): 384-390. |
57 | METHAAPANON R, KORNBONGKOTMAS S, ATABOONWONGSE C, et al. Microencapsulation of n-octadecane and methyl palmitate phase change materials in silica by spray drying process[J]. Powder Technology, 2020, 361: 910-916. |
58 | ZHANG H, WANG X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation[J]. Solar Energy Materials and Solar Cells, 2009, 93(8): 1366-1376. |
59 | 陆少锋, 邢建伟, 张昭环, 等. 界面聚合聚脲微胶囊相变材料的研制与性能[J]. 高分子材料科学与工程, 2010, 26(12): 39-41, 45. |
LU Shaofeng, XING Jianwei, ZHANG Zhaohuan, et al. Characterization of polyurea microencapsulated phase change materials prepared by interfacial polycondensation[J]. Polymer Materials Science & Engineering, 2010, 26(12): 39-41, 45. | |
60 | NAIKWADI A T, SAMUI A B, MAHANWAR P A. Melamine-formaldehyde microencapsulated n-tetracosane phase change material for solar thermal energy storage in coating[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110676. |
61 | SARAC E G, ONER E, KAHRAMAN M V. Microencapsulated organic coconut oil as a natural phase change material for thermo-regulating cellulosic fabrics[J]. Cellulose, 2019, 26(16): 8939-8950. |
62 | XU R, XIA X, WANG W, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with good thermal insulting properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591: 124519. |
63 | SRINIVASARAONAIK B, SINGH L P, TYAGI I, et al. Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage[J]. International Journal of Energy Research, 2020, 44(5): 3854-3864. |
64 | XU D, YANG R. Efficient preparation and characterization of paraffin-based microcapsules by emulsion polymerization[J]. Journal of Applied Polymer Science, 2019, 136(21): 4755221. |
65 | PRADHAN R, RAMASWAMY A P. Encapsulation of paraffin wax by rigid cross-linked poly (styrene divinylbenzene-acrylic acid) and its thermal characterization[J]. SN Applied Sciences, 2019, 1(8): 1-8. |
66 | KONUKLU Y, UNAL M, PAKSOY H O. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 120: 536-542. |
67 | CHEN Q, NI L, JIANG J, et al. Inhibition of exothermic runaway of batch reactors for the homogeneous esterification using nano-encapsulated phase change materials[J]. Applied Thermal Engineering, 2020, 178: 115531. |
68 | SUBRAMANIAN A, APPUKUTTAN S. Microencapsulation of stearic acid into strontium titanate shell by sol-gel approach for thermal energy storage[J]. Chemistryselect, 2019, 4(27): 7818-7823. |
69 | NANDIYANTO A B D, OKUYAMA K. Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges[J]. Advanced Powder Technology, 2011, 22(1): 1-19. |
70 | JIANG X, LUO R, PENG F, et al. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3[J]. Applied Energy, 2015, 137: 731-737. |
71 | ALVA G, LIN Y, LIU L, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review[J]. Energy and Buildings, 2017, 144: 276-294. |
72 | 李芙蓉, 孙志成, 张青青, 等. 相变微胶囊在节能环保中的应用研究进展[J]. 环境化学, 2020, 39(3): 762-773. |
LI Furong, SUN Zhicheng, ZHANG Qingqing, et al. Application of phase-change microcapsules in energy saving and environmental protection[J]. Environmental Chemistry, 2020, 39(3): 762-773. | |
73 | HUANG X, ZHU C, LIN Y, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: a review[J]. Applied Thermal Engineering, 2019, 147: 841-855. |
74 | HASSAN A, SHAKEEL LAGHARI M, RASHID Y. Micro-encapsulated phase change materials: a review of encapsulation, safety and thermal characteristics[J]. Sustainability, 2016, 8(10): 104610. |
75 | LIU Z, CHEN Z, YU F. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler[J]. Solar Energy Materials and Solar Cells, 2019, 192: 72-80. |
76 | ZHAO M, LI M, WANG L, et al. Preparation and characterization of paraffin@CLPS/MS phase change microcapsules for thermal energy storage[J]. Chemistryselect, 2020, 5(24): 7190-7196. |
77 | ZOU D, LIU X, HE R, et al. High thermal response rate and super low supercooling degree microencapsulated phase change materials (MEPCM) developed by optimizing shell with various nanoparticles[J]. International Journal of Heat and Mass Transfer, 2019, 140: 956-964. |
78 | LIU J, CHEN L, FANG X, et al. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2017, 159: 159-166. |
79 | 吴炳洋. 石墨烯改性相变微胶囊的制备、应用及数值模拟[D]. 天津: 天津工业大学, 2018. |
WU Bingyang. Preparation, application and numerical simulation of graphene-modified phase change microcapsules[D]. Tianjin: Tianjin Polytechnic University, 2018. | |
80 | 张雨卓, 张楠, 孙亮亮, 等. 氧化石墨烯改性石蜡相变微胶囊的制备与传热性能研究[J]. 现代化工, 2020, 40(10): 105-108, 114. |
ZHANG Yuzhuo, ZHANG Nan, SUN Liangliang, et al. Preparation of graphene oxide modified paraffin-based microencapsulated phase change material and study on its heat transfer performance[J]. Modern Chemical Industry, 2020, 40(10): 105-108, 114. | |
81 | 陈中华, 罗姚. 氧化石墨烯改性十二醇/PMMA相变微胶囊的制备及其对涂层隔热性能的影响[J]. 电镀与涂饰, 2020, 39(4): 195-200. |
CHEN Zhonghua, LUO Yao. Preparation of graphene oxide modified 1-dodecanol/PMMA phase change microcapsules and its effect on thermal insulation property of coating[J]. Electroplating & Finishing, 2020, 39(4): 195-200. | |
82 | SU J, WANG X, HAN S, et al. Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells[J]. Journal of Materials Chemistry A, 2017, 5(45): 23937-23951. |
83 | YIN D, LIU H, MA L, et al. Fabrication and performance of microencapsulated phase change materials with hybrid shell by insitu polymerization in Pickering emulsion[J]. Polymers for Advanced Technologies, 2015, 26(6): 613-619. |
84 | GAO X, ZHAO T, LUO G, et al. Facile method of fabricating microencapsulated phase change materials with compact bonding polymer-silica hybrid shell using TEOS/MPS[J]. Thermochimica Acta, 2018, 659: 183-190. |
85 | 郭翠静, 沈进冉, 李展鹏, 等. 多孔石墨烯的制备与储锂性能研究[J]. 电源技术, 2020, 44(2): 153-155, 222. |
GUO Cuijing, SHEN Jinran, LI Zhanpeng, et al. Synthesis and lithium storage performances of porous graphene[J]. Chinese Journal of Power Sources, 2020, 44(2): 153-155, 222. | |
86 | LI Z, WONG S L. Functionalization of 2D transition metal dichalcogenides for biomedical applications[J]. Materials Science and Engineering, 2017, 70: 1095-1106. |
87 | KOMISSAROV I V, KOVALCHUK N G, LABUNOV V A, et al. Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor[J]. Beilstein Journal of Nanotechnology, 2017, 8(1): 145-158. |
88 | MAKVANDI P, GHOMI M, ASHRAFIZADEH M, et al. A review on advances in graphene-derivative/polysaccharide bionanocomposites: therapeutics, pharmacogenomics and toxicity[J]. Carbohydrate Polymers, 2020, 250: 116952. |
89 | 刘欢, 刘玉, 牟志刚, 等. 石墨烯的功能化研究进展[J]. 化工新型材料, 2020, 48(4): 29-33, 38. |
LIU Huan, LIU Yu, MOU Zhigang, et al. Recent advance in the functionalization of graphene[J]. New Chemical Materials, 2020, 48(4): 29-33, 38. | |
90 | BIANCO G V, SACCHETTI A, MILELLA A, et al. Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping[J]. Carbon, 2020, 170: 75-84. |
91 | 白明洁, 刘金龙, 齐志娜, 等. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59. |
BAI Mingjie, LIU Jinlong, QI Zhina, et al. Research progress in nanofluids with graphene addition[J]. Journal of Materials Engineering, 2020, 48(4): 46-59. | |
92 | 马旭, 宋印东, 徐静雅, 等. 石墨烯纳米流体沸腾传热研究进展[J]. 热能动力工程, 2020, 35(10): 1-9. |
MA Xu, SONG Yindong, XU Jingya, et al. Research progress of boiling heat transfer of graphene nanofluids[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(10): 1-9. | |
93 | BAI M, LIU J, HE J, et al. Heat transfer and mechanical friction reduction properties of graphene oxide nanofluids[J]. Diamond and Related Materials, 2020, 108: 107982. |
94 | 郭华超, 杨波, 黄国家, 等. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888. |
GUO Huachao, YANG Bo, HUANG Guojia, et al. Preparation and properties of polyvinylidene fluoride/graphene composites[J]. CIESC Journal, 2020, 71(4): 1881-1888. | |
95 | 高国梁, 张海涛, 李晨斌, 等. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165. |
GAO Guoliang, ZHANG Haitao, LI Chenbin, et al. Synthesis and Li-ion storage properties of COPs/rGO composites[J]. Materials Reports, 2020, 34(6): 6161-6165. | |
96 | 崔浩田, 苏钰, 胡洋阳, 等. Co2O3/石墨烯复合材料的结构及电化学性能研究[J]. 人工晶体学报, 2019, 48(5): 873-877, 888. |
CUI Haotian, SU Yu, HU Yangyang, et al. Structure and electrochemical properties of Co2O3/graphene composites[J]. Journal of Synthetic Crystals, 2019, 48(5): 873-877, 888. | |
97 | 陈中华, 王建川, 余飞, 等. 氧化石墨烯/密胺树脂复合材料的制备及其热性能研究[J]. 功能材料, 2015, 46(1): 1125-1128, 1134. |
CHEN Zhonghua, WANG Jianchuan, YU Fei, et al. Preparation and thermal properties of graphene oxide /MF composites[J]. Journal of Functional Materials, 2015, 46(1): 1125-1128, 1134. | |
98 | LIN Y, ZHU C, FANG G. Synthesis and properties of microencapsulated stearic acid/silica composites with graphene oxide for improving thermal conductivity as novel solar thermal storage materials[J]. Solar Energy Materials and Solar Cells, 2019, 189: 197-205. |
99 | 张丽, 杨文彬, 张凯, 等. 氧化石墨烯改性密胺树脂/石蜡相变微胶囊的制备及性能[J]. 高分子材料科学与工程, 2017, 33(5): 147-151. |
ZHANG Li, YANG Wenbin, ZHANG Kai, et al. Preparation and propertiy of melamine-formaldehyde resin/paraffin microencapsulated phase change materials modified by graphene oxide[J]. Polymer Materials Science & Engineering, 2017, 33(5): 147-151. | |
100 | LIU Z, CHEN Z, YU F. Microencapsulated phase change material modified by graphene oxide with different degrees of oxidation for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 174: 453-459. |
101 | 谢洪涛, 李星辰, 绳春晨, 等. 微通道换热器结构及优化设计研究进展[J]. 真空与低温, 2020, 26(4): 310-316. |
XIE Hongtao, LI Xingchen, SHENG Chunchen, et al. Progress in structure and optimal design of microchannel heat sink[J]. Vacuum and Cryogenics, 2020, 26(4): 310-316. | |
102 | SUN Z, ZHAO L, WAN H, et al. Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors[J]. Chemical Engineering Journal, 2020, 396: 125317. |
103 | FANG Y, QU Z G, ZHANG J F, et al. Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material[J]. Applied Energy, 2020, 275: 115353. |
104 | REN Q, GUO P, ZHU J. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119199. |
105 | GUO Y, MA H, FU B, et al. Heat transfer analysis of flash evaporation with MEPCM[J]. Journal of Thermal Science and Engineering Applications, 2019, 11(5): 1-19. |
106 | 郭阳, 纪玉龙, 苏风民, 等. 海水淡化过程中相变微胶囊相变放热过程分析[J]. 水处理技术, 2016, 42(8): 19-22. |
GUO Yang, JI Yulong, SU Fengmin, et al. Analysis of microcapsules latent heat release process in desalination[J]. Technology of Water Treatment, 2016, 42(8): 19-22. | |
107 | ZHANG Y, LI J, LIU H, et al. Microencapsulated phase change materials composited Al2O3SiO2 aerogel and the thermal regulation properties[J]. Journal of Sol-Gel Science and Technology, 2020, 96(3): 627-635. |
108 | WEI Z, FALZONE G, WANG B, et al. The durability of cementitious composites containing microencapsulated phase change materials[J]. Cement and Concrete Composites, 2017, 81: 66-76. |
109 | ZHOU Q, LIU P, TZENG C, et al. Thermal performance of microencapsulated phase change material (mPCM) in roof modules during daily operation[J]. Energies, 2018, 11(3): 679. |
110 | SU W, DARKWA J, KOKOGIANNAKIS G. Numerical thermal evaluation of laminated binary microencapsulated phase change material drywall systems[J]. Building Simulation, 2020, 13(1): 89-98. |
111 | JIAO S, SUN Z, LI F, et al. Preparation and application of conductive polyaniline-coated thermally expandable microspheres[J]. Polymers, 2018, 11(1). DOI:10.3390/polym11010022. |
112 | GU M, ZHANG W, HAO S, et al. Ultraviolet light-initiated preparation of phase change material microcapsules and its infrared imaging effect on fabric[J]. Pigment & Resin Technology, 2021, 50(2): 129-135. |
113 | ZHANG T, LUO Y, WANG M, et al. Double-layered microcapsules significantly improve the long-term effectiveness of essential oil[J]. Polymers, 2020, 12(8): 1651. |
114 | PRAJAPATI D G, KANDASUBRAMANIAN B. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419. |
115 | CAI C, OUYANG X, ZHOU L, et al. Co-solvent free interfacial polycondensation and properties of polyurea PCM microcapsules with dodecanol dodecanoate as core material[J]. Solar Energy, 2020, 199: 721-730. |
116 | FANG Y, HUANG L, LIANG X, et al. Facilitated synthesis and thermal performances of novel SiO2 coating Na2HPO4·7H2O microcapsule as phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110257. |
117 | ZHENG L, ZHANG W, XIE L, et al. Experimental study on the thermal performance of solar air conditioning system with MEPCM cooling storage[J]. International Journal of Low-Carbon Technologies, 2019, 14(1): 83-88. |
118 | HAO Y L, TAO Y X. A numerical model for phase-change suspension flow in microchannels[J]. Numerical Heat Transfer, Part A: Applications, 2004, 46(1): 55-77. |
119 | SABBAH R, FARID M M, AL-HALLAJ S. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study[J]. Applied Thermal Engineering, 2009, 29(2/3): 445-454. |
120 | HASAN M I. Numerical investigation of counter flow microchannel heat exchanger with MEPCM suspension[J]. Applied Thermal Engineering, 2011, 31(6/7): 1068-1075. |
121 | RAJABI FAR B R, MOHAMMADIAN S K, KHANNA S K, et al. Effects of pin tip-clearance on the performance of an enhanced microchannel heat sink with oblique fins and phase change material slurry[J]. International Journal of Heat and Mass Transfer, 2015, 83: 136-145. |
122 | SEYF H R, ZHOU Z, MA H S, et al. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 561-573. |
123 | KURAVI S, KOTA K M, DU J, et al. Numerical investigation of flow and heat transfer performance of nano-encapsulated phase change material slurry in microchannels[J]. Journal of Heat Transfer-Transactions of the Asme, 2009, 131(6): 062901. DOI:10.1115/1.3084123. |
124 | HO C J, GUO Y, YANG T, et al. Numerical study on forced convection of water-based suspensions of nanoencapsulated PCM particles/Al2O3 nanoparticles in a mini-channel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119965. |
125 | BAI F, CHEN M, SONG W, et al. Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate[J]. Energy, 2019, 167: 561-574. |
126 | ALQUAITY A B S, AL-DINI S A, WANG E N, et al. Numerical investigation of liquid flow with phase change nanoparticles in microchannels[J]. International Journal of Heat and Fluid Flow, 2012, 38: 159-167. |
127 | 邓荀嘉. 面向芯片降温的相变乳液微通道相变换热研究[D]. 大连: 大连理工大学, 2018. |
DENG Xunjia. Research on heat transfer of microchannel heat sinks using phase change emulsion for chip cooling[D]. Dalian: Dalian University of Technology, 2018. | |
128 | RAO Y, DAMMEL F, STEPHAN P, et al. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels[J]. Heat and Mass Transfer, 2007, 44(2): 175-186. |
129 | 李宜轩. 采用相变微胶囊悬浮液闭环热虹吸换热研究[D]. 大连: 大连理工大学, 2019. |
LI Yixuan. Research on heat transfer of a closed-loop thermosyphon using microencapsulated phase change material suspensions[D]. Dalian: Dalian University of Technology, 2019. | |
130 | WU W, BOSTANCI H, CHOW L C, et al. Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 348-355. |
131 | HO C J, LIU Y, GHALAMBAZ M, et al. Forced convection heat transfer of nano-encapsulated phase change material (NEPCM) suspension in a mini-channel heatsink[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119858. |
132 | HO C J, HUANG J B, TSAI P S, et al. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid[J]. International Communications in Heat and Mass Transfer, 2010, 37(5): 490-494. |
133 | HO C J, CHEN W, YAN W. Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles[J]. International Journal of Heat and Mass Transfer, 2014, 69: 293-299. |
134 | HO C J, CHEN W, YAN W, et al. Contribution of hybrid Al2O3-water nanofluid and PCM suspension to augment thermal performance of coolant in a minichannel heat sink[J]. International Journal of Heat and Mass Transfer, 2018, 122: 651-659. |
135 | YAN W, HO C J, TSENG Y, et al. Numerical study on convective heat transfer of nanofluid in a minichannel heat sink with micro-encapsulated PCM-cooled ceiling[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119589. |
136 | HO C J, LIAO J, LI C, et al. Experimental study of cooling performance of water-based alumina nanofluid in a minichannel heat sink with MEPCM layer embedded in its ceiling[J]. International Communications in Heat and Mass Transfer, 2019, 103: 1-6. |
137 | HO C J, LIAO J, YAN W, et al. Experimental study of transient thermal characteristics of nanofluid in a minichannel heat sink with MEPCM layer in its ceiling[J]. International Journal of Heat and Mass Transfer, 2019, 133: 1041-1051. |
[1] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[4] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[5] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[8] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[9] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[10] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[11] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[12] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[13] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[14] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[15] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |