化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5166-5179.DOI: 10.16085/j.issn.1000-6613.2021-0460
林文珠1(), 凌子夜1,2, 方晓明1,2, 张正国1,2()
收稿日期:
2021-03-08
修回日期:
2021-05-20
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
张正国
作者简介:
林文珠(1993—),女,博士研究生,研究方向为传热强化。E-mail:基金资助:
LIN Wenzhu1(), LING Ziye1,2, FANG Xiaoming1,2, ZHANG Zhengguo1,2()
Received:
2021-03-08
Revised:
2021-05-20
Online:
2021-09-05
Published:
2021-09-13
Contact:
ZHANG Zhengguo
摘要:
相变储热技术具有储热密度大、相变温度稳定以及过程容易控制等优点,具有广泛应用前景。相变储热技术在应用中需完成热能的储存与释放过程,其传热特性直接决定应用效果。储热技术的传热强化主要包括三个方面:一是相变材料本身的导热强化;二是潜热型功能热流体的对流传热强化;三是储热器的传热强化。本文综述了国内外在相变储热技术的传热强化研究方面的进展,主要介绍了膨胀石墨、泡沫金属等复合相变材料的导热强化,相变微胶囊及相变微、纳米乳液潜热型功能热流体传热强化以及管壳式储热器、板式储热器、螺旋盘管储热器等储热器的传热强化。文章指出,膨胀石墨基复合相变材料具有高热导率、大储热密度以及良好的定型特性,且价格低廉,极具应用前景。纳米乳液功能热流体具有表观比热容大、流阻较小等优势,但存在稳定性较差、过冷度大等问题。板式储热器具有较大的传热面积、较高的传热功率,适宜应用于相变材料传热系统。但应用背景不同,针对不同场景提供不同储热器的选型及指导值得作进一步的研究。
中图分类号:
林文珠, 凌子夜, 方晓明, 张正国. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179.
LIN Wenzhu, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179.
106 | SAEED R M, SCHLEGEL J P, SAWAFTA R, et al. Plate type heat exchanger for thermal energy storage and load shifting using phase change material[J]. Energy Conversion and Management, 2019, 181: 120-132. |
107 | GÜREL B. Thermal performance evaluation for solidification process of latent heat thermal energy storage in a corrugated plate heat exchanger[J]. Applied Thermal Engineering, 2020, 174: 115312. |
108 | PALOMBA V, BRANCATO V, FRAZZICA A. Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: an experimental investigation based on an asymmetric plate heat exchanger[J]. Energy Conversion and Management, 2019, 200: 112121. |
109 | LIN W Z, ZHANG W B, LING Z Y, et al. Experimental study of the thermal performance of a novel plate type heat exchanger with phase change material[J]. Applied Thermal Engineering, 2020, 178: 115630. |
110 | LIN W Z, LING Z Y, ZHANG Z G, et al. Experimental and numerical investigation of sebacic acid/expanded graphite composite phase change material in a double-spiral coiled heat exchanger[J]. Journal of Energy Storage, 2020, 32: 101849. |
111 | HU W J, SONG M J, JIANG Y Q, et al. A modeling study on the heat storage and release characteristics of a phase change material based double-spiral coiled heat exchanger in an air source heat pump for defrosting[J]. Applied Energy, 2019, 236: 877-892. |
112 | MAHDI M S, MAHOOD H B, CAMPBELL A N, et al. Experimental study on the melting behavior of a phase change material in a conical coil latent heat thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 175: 114684. |
113 | ZHENG X J, XIE N, CHEN C X, et al. Numerical investigation on paraffin/expanded graphite composite phase change material based latent thermal energy storage system with double spiral coil tube[J]. Applied Thermal Engineering, 2018, 137: 164-172. |
114 | SAYDAM V, PARSAZADEH M, RADEEF M, et al. Design and experimental analysis of a helical coil phase change heat exchanger for thermal energy storage[J]. Journal of Energy Storage, 2019, 21: 9-17. |
1 | 张所续, 马伯永. 世界能源发展趋势与中国能源未来发展方向[J]. 中国国土资源经济, 2019, 32(10): 20-27, 33. |
ZHANG Suoxu, MA Boyong. Development trend of world energy and future development directions of China’s energy[J]. Natural Resource Economics of China, 2019, 32(10): 20-27, 33. | |
2 | 方行明, 何春丽, 张蓓. 世界能源演进路径与中国能源结构的转型[J]. 政治经济学评论, 2019, 10(2): 178-201. |
FANG Xingming, HE Chunli, ZHANG Bei. Energy evolutional path of the world and the energy structure transformation of China[J]. China Review of Political Economy, 2019, 10(2): 178-201. | |
3 | CENTER B P. Annual energy outlook 2020 [EB/OL]. . |
4 | JOUHARA H, ŻABNIEŃSKA-GÓRA A, KHORDEHGAH N, et al. Latent thermal energy storage technologies and applications: a review[J]. International Journal of Thermofluids, 2020, 5/6: 100039. |
5 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
6 | ELIAS C N, STATHOPOULOS V N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage[J]. Energy Procedia, 2019, 161: 385-394. |
7 | 陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10. |
CHEN Ying, JIANG Qinghui, XIN Jiwu, et al. Research status and application of phase change materials[J]. Journal of Materials Engineering, 2019, 47(7): 1-10. | |
8 | ZAYED M E, ZHAO J, ELSHEIKH A H, et al. Applications of cascaded phase change materials in solar water collector storage tanks: a review[J]. Solar Energy Materials and Solar Cells, 2019, 199: 24-49. |
9 | LI D C, WANG J H, DING Y L, et al. Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage[J]. Applied Energy, 2019, 236: 1168-1182. |
10 | CUNHA S R L DA, DE AGUIAR J L B. Phase change materials and energy efficiency of buildings: a review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083. |
11 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
12 | QURESHI Z A, ALI H M, KHUSHNOOD S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review[J]. International Journal of Heat and Mass Transfer, 2018, 127: 838-856. |
13 | SINGH R, SADEGHI S, SHABANI B. Thermal conductivity enhancement of phase change materials for low-temperature thermal energy storage applications[J]. Energies, 2018, 12(1): 75. |
14 | PRADO J I, LUGO L. Enhancing the thermal performance of a stearate phase change material with graphene nanoplatelets and MgO nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39108-39117. |
15 | CHEN X, GAO H Y, HAI G T, et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy[J]. Energy Storage Materials, 2020, 26: 129-137. |
16 | OYA T, NOMURA T, TSUBOTA M, et al. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles[J]. Applied Thermal Engineering, 2013, 61(2): 825-828. |
17 | ZHANG L, ZHOU K C, WEI Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233/234: 208-219. |
18 | WANG F X, LIN W Z, LING Z Y, et al. A comprehensive review on phase change material emulsions: fabrication, characteristics, and heat transfer performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 218-234. |
19 | LIU H, WANG X D, WU D Z. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review[J]. Sustainable Energy & Fuels, 2019, 3(5): 1091-1149. |
20 | LIU Z F, CHEN Z H, YU F. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler[J]. Solar Energy Materials and Solar Cells, 2019, 192: 72-80. |
21 | ZHOU Y, LI C H, WU H, et al. Construction of hybrid graphene oxide/graphene nanoplates shell in paraffin microencapsulated phase change materials to improve thermal conductivity for thermal energy storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597: 124780. |
22 | LIU H, WANG X D, WU D Z, et al. Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation[J]. Energy, 2019, 172: 599-617. |
23 | JOSHI V, RATHOD M K. Constructal enhancement of thermal transport in latent heat storage systems assisted with fins[J]. International Journal of Thermal Sciences, 2019, 145: 105984. |
24 | LEONG K Y, ABDUL RAHMAN M R, GURUNATHAN B A. Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges[J]. Journal of Energy Storage, 2019, 21: 18-31. |
25 | WU W X, WU W, WANG S F. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications[J]. Applied Energy, 2019, 236: 10-21. |
115 | LIN W Z, LING Z Y, FANG X M, et al. Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material[J]. Applied Thermal Engineering, 2021, 186: 116493. |
26 | XU T, CHEN Q L, HUANG G S, et al. Preparation and thermal energy storage properties of D-Mannitol/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2016, 155: 141-146. |
27 | 方晓明, 张正国, 陈中华, 等. 有机物/膨胀石墨复合相变储热建筑材料及其制备方法: CN101239798A[P]. 2008-08-13. |
FANG Xiaoming, ZHANG Zhengguo, CHEN Zhonghua, et al. Organic matter/expandable graphite composite phase change heat-storing building material and preparation method thereof: CN101239798A[P]. 2008-08-13. | |
28 | ZHANG Z G, FANG X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Energy Conversion and Management, 2006, 47(3): 303-310. |
29 | ZHANG Z G, ZHANG N, PENG J, et al. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Applied Energy, 2012, 91(1): 426-431. |
30 | WANG S P, QIN P, FANG X M, et al. A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications[J]. Solar Energy, 2014, 99: 283-290. |
31 | ZHANG Q, WANG H C, LING Z Y, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells, 2015, 140: 158-166. |
32 | LING Z Y, CHEN J J, XU T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model[J]. Energy Conversion and Management, 2015, 102: 202-208. |
33 | YUAN M D, REN Y X, XU C, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136: 211-222. |
34 | SONG Y L, ZHANG N, JING Y G, et al. Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage[J]. Energy, 2019, 189: 116175. |
35 | LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113. |
36 | LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409. |
37 | CAO J H, LUO M Y, FANG X M, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: an experimental and numerical study[J]. Energy, 2020, 191: 116565. |
38 | SENTHILKUMAR M, BALASUBRAMANIAN K R, KOTTALA R K, et al. Characterization of form-stable phase-change material for solar photovoltaic cooling[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(6): 2487-2496. |
39 | LIU L F, CHEN J Y, QU Y, et al. A foamed cement blocks with paraffin/expanded graphite composite phase change solar thermal absorption material[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110038. |
40 | LING Z Y, LI S M, ZHANG Z G, et al. A shape-stabilized MgCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composite phase change material with high thermal conductivity and stability[J]. Journal of Applied Electrochemistry, 2018, 48(10): 1131-1138. |
41 | YE R D, LIN W Z, YUAN K J, et al. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Energy, 2017, 193: 325-335. |
42 | YE R D, LIN W Z, FANG X M, et al. A numerical study of building integrated with CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Thermal Engineering, 2017, 126: 480-488. |
43 | YE R D, ZHANG C, SUN W C, et al. Novel wall panels containing CaCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composites with different phase change temperatures for building energy savings[J]. Energy and Buildings, 2018, 176: 407-417. |
44 | SUN W C, HUANG R, LING Z Y, et al. Two types of composite phase change panels containing a ternary hydrated salt mixture for use in building envelope and ventilation system[J]. Energy Conversion and Management, 2018, 177: 306-314. |
45 | SUN W C, HUANG R, LING Z Y, et al. Numerical simulation on the thermal performance of a PCM-containing ventilation system with a continuous change in inlet air temperature[J]. Renewable Energy, 2020, 145: 1608-1619. |
46 | SUN W C, ZHANG Y X, LING Z Y, et al. Experimental investigation on the thermal performance of double-layer PCM radiant floor system containing two types of inorganic composite PCMs[J]. Energy and Buildings, 2020, 211: 109806. |
47 | FANG Y T, DING Y F, TANG Y F, et al. Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating[J]. Applied Thermal Engineering, 2019, 150: 1177-1185. |
48 | ZHOU Y, SUN W C, LING Z Y, et al. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14799-14806. |
49 | ZHOU S Y, ZHOU Y, LING Z Y, et al. Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs[J]. Applied Thermal Engineering, 2018, 133: 446-451. |
50 | LIU J W, WANG Q H, LING Z Y, et al. A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion[J]. Solar Energy Materials and Solar Cells, 2017, 169: 280-286. |
51 | XU T, LI Y T, CHEN J Y, et al. Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material[J]. Applied Thermal Engineering, 2018, 140: 13-22. |
52 | LIU J W, XIE M, LING Z Y, et al. Novel MgCl2-KCl/expanded graphite/graphite paper composite phase change blocks with high thermal conductivity and large latent heat[J]. Solar Energy, 2018, 159: 226-233. |
53 | XIE M, HUANG J C, LING Z Y, et al. Improving the heat storage/release rate and photo-thermal conversion performance of an organic PCM/expanded graphite composite block[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110081. |
54 | HE J S, YANG X Q, ZHANG G Q. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management[J]. Applied Thermal Engineering, 2019, 148: 984-991. |
55 | TAUSEEF-UR-REHMAN, ALI H M, JANJUA M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
56 | LI M, MU B Y. Effect of different dimensional carbon materials on the properties and application of phase change materials: a review[J]. Applied Energy, 2019, 242: 695-715. |
57 | WANG W T, UMAIR M M, QIU J J, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites[J]. Energy Conversion and Management, 2019, 196: 1299-1305. |
58 | ALLAHBAKHSH A, ARJMAND M. Graphene-based phase change composites for energy harvesting and storage: state of the art and future prospects[J]. Carbon, 2019, 148: 441-480. |
59 | WU T, XIE N, NIU J Y, et al. Preparation of a low-temperature nanofluid phase change material: MgCl2-H2O eutectic salt solution system with multi-walled carbon nanotubes (MWCNTs)[J]. International Journal of Refrigeration, 2020, 113: 136-144. |
60 | XIE N, NIU J Y, GAO X N, et al. Fabrication and characterization of electrospun fatty acid form-stable phase change materials in the presence of copper nanoparticles[J]. International Journal of Energy Research, 2020, 44(11): 8567-8577. |
61 | CHEN P, GAO X N, WANG Y Q, et al. Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 149: 60-65. |
62 | CAO R R, WANG Y Z, CHEN S, et al. Multiresponsive shape-stabilized hexadecyl acrylate-grafted graphene as a phase change material with enhanced thermal and electrical conductivities[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8982-8991. |
63 | HAN D M, GUENE LOUGOU B, XU Y T, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264: 114674. |
64 | WANG T Y, WANG S F, WU W. Experimental study on effective thermal conductivity of microcapsules based phase change composites[J]. International Journal of Heat and Mass Transfer, 2017, 109: 930-937. |
65 | AMIN M, PUTRA N, KOSASIH E A, et al. Thermal properties of beeswax/graphene phase change material as energy storage for building applications[J]. Applied Thermal Engineering, 2017, 112: 273-280. |
66 | WANG J F, XIE H Q, XIN Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344. |
67 | CUI W L, YUAN Y P, SUN L L, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials[J]. Renewable Energy, 2016, 99: 1029-1037. |
68 | LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157. |
69 | LAN W, SHANG B F, WU R K, et al. Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid[J]. International Journal of Thermal Sciences, 2021, 159: 106619. |
70 | HADDAD Z, IACHACHENE F, ABU-NADA E, et al. Investigation of the novelty of latent functionally thermal fluids as alternative to nanofluids in natural convective flows[J]. Scientific Reports, 2020, 10: 20257. |
71 | KARAIPEKLI A, ERDOĞAN T, BARLAK S. The stability and thermophysical properties of a thermal fluid containing surface-functionalized nanoencapsulated PCM[J]. Thermochimica Acta, 2019, 682: 178406. |
72 | ALEHOSSEINI E, JAFARI S M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry[J]. Trends in Food Science & Technology, 2019, 91: 116-128. |
73 | GHALAMBAZ M, CHAMKHA A J, WEN D S. Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity[J]. International Journal of Heat and Mass Transfer, 2019, 138: 738-749. |
74 | HAJJAR A, MEHRYAN S A M, GHALAMBAZ M. Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension[J]. International Journal of Mechanical Sciences, 2020, 166: 105243. |
75 | FANG Y T, KUANG S Y, GAO X N, et al. Preparation and characterization of novel nanoencapsulated phase change materials[J]. Energy Conversion and Management, 2008, 49(12): 3704-3707. |
76 | FANG Y T, KUANG S Y, GAO X N, et al. Preparation of nanoencapsulated phase change material as latent functionally thermal fluid[J]. Journal of Physics D: Applied Physics, 2009, 42(3): 035407. |
77 | FANG Y T, YU H M, WAN W J, et al. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials[J]. Energy Conversion and Management, 2013, 76: 430-436. |
78 | FANG Y T, ZOU T, LIANG X H, et al. Self-assembly synthesis and properties of microencapsulated n-tetradecane phase change materials with a calcium carbonate shell for cold energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3074-3080. |
79 | FANG Y T, HUANG L H, LIANG X H, et al. Facilitated synthesis and thermal performances of novel SiO2 coating Na2HPO4⋅7H2O microcapsule as phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110257. |
80 | FU W W, LIANG X H, XIE H Z, et al. Thermophysical properties of n-tetradecane@polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage[J]. Energy and Buildings, 2017, 136: 26-32. |
81 | RODRÍGUEZ-CUMPLIDO F, PABÓN-GELVES E, CHEJNE-JANA F. Recent developments in the synthesis of microencapsulated and nanoencapsulated phase change materials[J]. Journal of Energy Storage, 2019, 24: 100821. |
82 | ZHU Y L, QIN Y S, LIANG S E, et al. Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling[J]. Applied Energy, 2019, 250: 98-108. |
83 | WU S Y, MA X Y, PENG D Q, et al. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(6): 2353-2361. |
84 | YUAN K J, WANG H C, LIU J, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2015, 143: 29-37. |
85 | YUAN K J, LIU J, FANG X M, et al. Novel facile self-assembly approach to construct graphene oxide-decorated phase-change microcapsules with enhanced photo-to-thermal conversion performance[J]. Journal of Materials Chemistry A, 2018, 6(10): 4535-4543. |
86 | LIU J, CHEN L L, FANG X M, et al. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2017, 159: 159-166. |
87 | SAPUTRO E A, AL-SHANNAQ R, FARID M M. Performance of metal and non-metal coated phase change materials microcapsules when used in compressed air energy storage system[J]. Applied Thermal Engineering, 2019, 157: 113715. |
88 | MAITHYA O M, ZHU X Y, LI X, et al. High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering emulsion for photothermal conversion[J]. Solar Energy Materials and Solar Cells, 2021, 222: 110924. |
89 | MORIMOTO T, KAWANA Y, SAEGUSA K, et al. Supercooling characteristics of phase change material particles within phase change emulsions[J]. International Journal of Refrigeration, 2019, 99: 1-7. |
90 | WANG F X, FANG X M, ZHANG Z G. Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 176: 381-390. |
91 | WANG F X, LING Z Y, FANG X M, et al. Optimization on the photo-thermal conversion performance of graphite nanoplatelets decorated phase change material emulsions[J]. Solar Energy Materials and Solar Cells, 2018, 186: 340-348. |
92 | WANG F X, ZHANG C, LIU J, et al. Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage[J]. Applied Energy, 2017, 188: 97-106. |
93 | WANG F X, CAO J H, LING Z Y, et al. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack[J]. Energy, 2020, 207: 118215. |
94 | CAO J H, HE Y J, FENG J X, et al. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge[J]. Applied Energy, 2020, 279: 115808. |
95 | MARUOKA N, TSUTSUMI T, ITO A, et al. Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer[J]. Energy, 2020, 205: 118055. |
96 | NIE B J, DU Z, ZOU B Y, et al. Performance enhancement of a phase-change-material based thermal energy storage device for air-conditioning applications[J]. Energy and Buildings, 2020, 214: 109895. |
97 | GORZIN M, HOSSEINI M J, RAHIMI M, et al. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger[J]. Journal of Energy Storage, 2019, 22: 88-97. |
98 | LEE D, KANG C. A study on development of the thermal storage type plate heat exchanger including PCM layer[J]. Journal of Mechanical Science and Technology, 2019, 33(12): 6085-6093. |
99 | CHEN C X, ZHANG H, GAO X N, et al. Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM[J]. Energy Conversion and Management, 2016, 126: 889-897. |
100 | SAJAWAL M, REHMAN T U, ALI H M, et al. Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater[J]. Case Studies in Thermal Engineering, 2019, 15: 100543. |
101 | SODHI G S, JAISWAL A K, VIGNESHWARAN K, et al. Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device[J]. Energy Conversion and Management, 2019, 188: 381-397. |
102 | TU R, LI J Q, HWANG Y. Study of temperature uniformity and thermal storage performances of a shell-and-tube type phase change plate[J]. International Journal of Refrigeration, 2021, 122: 69-80. |
103 | LIN W Z, WANG Q H, FANG X M, et al. Experimental and numerical investigation on the novel latent heat exchanger with paraffin/expanded graphite composite[J]. Applied Thermal Engineering, 2018, 144: 836-844. |
104 | LIN W Z, HUANG R, FANG X M, et al. Improvement of thermal performance of novel heat exchanger with latent heat storage[J]. International Journal of Heat and Mass Transfer, 2019, 140: 877-885. |
105 | ZAYED M E, ZHAO J, ELSHEIKH A H, et al. Performance augmentation of flat plate solar water collector using phase change materials and nanocomposite phase change materials: a review[J]. Process Safety and Environmental Protection, 2019, 128: 135-157. |
[1] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[2] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[3] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
[4] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[5] | 吴伟雄, 谢世伟, 马瑞鑫, 刘吉臻, 汪双凤, 饶中浩. 固-液/气-液多相耦合热控技术应用研究进展[J]. 化工进展, 2023, 42(3): 1143-1154. |
[6] | 赵西坡, 卞武勋, 冉宝清, 刘进超, 尹少鼎, 孙义明. 石蜡固-固相变材料的制备及性能[J]. 化工进展, 2023, 42(2): 897-906. |
[7] | 郝旭波, 牛宝联, 郭昊天, 徐祥和, 张忠斌, 李应林. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2): 854-871. |
[8] | 孙义明, 冉宝清, 卞武勋, 刘进超, 尹少鼎, 赵西坡. 聚丙烯蜡固-固相变材料的制备与工艺优化[J]. 化工进展, 2023, 42(1): 336-345. |
[9] | 白金刚, 苑正己, 刘雨, 张义师, 吕喜风. 癸酸-石蜡/石墨烯气凝胶定形相变材料的制备及热物性分析[J]. 化工进展, 2022, 41(8): 4441-4448. |
[10] | 张春伟, 李山峰, 郭永朝, 张学军, 江龙. 定热流边界下重力作用PCM熔化过程规律[J]. 化工进展, 2022, 41(8): 4129-4139. |
[11] | 郭制安, 隋智慧, 李亚萍, 徐逸坤, 孙芳, 赵欣. 相变双向调温纺织材料制备技术研究进展[J]. 化工进展, 2022, 41(7): 3648-3659. |
[12] | 朱孟帅, 王子龙, 孙向昕, 周翔. 高孔密度下泡沫铜的填充率对石蜡融化传热机理的影响[J]. 化工进展, 2022, 41(6): 3203-3211. |
[13] | 张瑞瑞, 王宁, 高志, 于晓慧, 杨宾. 赤藻糖醇/甘露醇过冷特性分析[J]. 化工进展, 2022, 41(6): 2959-2966. |
[14] | 陆少锋, 崔杉杉, 师文钊, 李苏松, 谢艳, 杨乾诚. 交联水性聚氨酯固-固相变材料的制备及性能[J]. 化工进展, 2022, 41(5): 2574-2581. |
[15] | 杨洪海, 张苗, 刘利伟, 周屹, 沈俊杰, 施伟刚, 尹勇. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725-1734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |