化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5156-5165.doi: 10.16085/j.issn.1000-6613.2021-0632

• • 上一篇    下一篇

热增强的光催化二氧化碳还原技术

罗志斌1,2(), 龙冉2, 王小博1, 裴爱国1, 熊宇杰2()   

  1. 1.中国能源建设集团广东省电力设计研究院有限公司,广东 广州 510663
    2.中国科学技术大学化学与材料科学学院,安徽 合肥 230026
  • 收稿日期:2021-03-29 修回日期:2021-07-04 出版日期:2021-09-05 发布日期:2021-09-13
  • 通讯作者: 熊宇杰 E-mail:luozhibin@gedi.com.cn;yjxiong@ustc.edu.cn
  • 作者简介:罗志斌(1989年—),男,博士,博士后,研究方向为氢能以及二氧化碳利用技术产业化。E-mail:luozhibin@gedi.com.cn
  • 基金资助:
    国家杰出青年科学基金(21725102);中国博士后科学基金(2020M682996)

Thermal-enhanced photocatalytic carbon dioxide reduction

LUO Zhibin1,2(), LONG Ran2, WANG Xiaobo1, PEI Aiguo1, XIONG Yujie2()   

  1. 1.China Energy Engineering Group Guangdong Electric Power Design Institute Co. , Ltd. , Guangzhou 510663, Guangdong, China
    2.School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2021-03-29 Revised:2021-07-04 Online:2021-09-05 Published:2021-09-13
  • Contact: XIONG Yujie E-mail:luozhibin@gedi.com.cn;yjxiong@ustc.edu.cn

摘要:

利用太阳光驱动二氧化碳(CO2)催化转化合成燃料是缓解能源危机和降低温室效应的理想途径。然而,当前面临的主要挑战在于CO2固有的化学稳定性使得光催化反应的转化效率低下。热量被认为是促进催化转化反应过程的重要推动力,可以有效提升光催化转化的效率。本文综述了不同形式的热增强光催化在CO2还原生产燃料方面的应用,包括外加热源的光催化CO2还原、光热效应促进的光催化CO2还原以及等离激元增强的光催化CO2还原体系。文章指出:热增强的光催化技术继承了光催化的高选择性和热催化的高反应活性的优势,实现了CO2还原反应的高效进行。具体分析如下:外加热源主要通过直接加热装置或者聚焦太阳光能实现,产物的生成效率明显增强,选择性影响不大;光热效应发挥着局部提高催化剂反应温度的作用,使能量利用效率更高,大幅度降低CO2还原反应所需的能量;等离激元效应除了发挥光热效应的作用,同时兼备增强光吸收、促进载流子分离和加速表面反应动力学的作用。文章最后指出,通过对反应机理进行深度研究,合理调控反应体系的反应条件,将极大促进热增强的光催化CO2还原技术发展,为CO2利用提供有效手段。

关键词: CO2转化, 热增强, 光催化, 等离激元效应, 光吸收

Abstract:

Directly utilizing sunlight to drive catalytic carbon dioxide (CO2) reduction into synthetic chemical fuels is one of the most promising approaches to alleviate the energy crisis and reduce the greenhouse effect. However, the inherent chemical stability of CO2 results in low photocatalytic conversion efficiency, forming a great challenge. Thermal energy is considered to be an important driving force to improve the catalytic conversion rate during the reaction process. Taking advantages of the high selectivity by photocatalysis and the high reaction activity by thermal catalysis, the thermal-enhanced photocatalysis CO2 reduction exhibits high conversion efficiency. This article summarized the different forms of thermal-enhanced photocatalysis CO2 reduction, including external heating sources, photothermal effect and plasmonic effect. The external heating source was mainly realized by direct heating device or focused solar energy, which could remarkably increase the production efficiency. The photothermal effect was exerting to increase the local reaction temperature of catalyst, which greatly enhanced the energy utilization efficiency in CO2 reduction. In addition to the same effect as the photothermal effect, plasmonic effect also played a role in enhancing light absorption, promoting carrier separation and accelerating surface reaction kinetics. In-depth research on the reaction mechanism and rational control of the reaction conditions would greatly promote the development of thermal-enhanced photocatalytic CO2 reduction technology and provide effective means for CO2 utilization.

Key words: CO2 conversion, thermal enhanced, photocatalytic, plasmonic effect, light absorption

中图分类号: 

  • TQ034