1 |
XU C, KOHLER T A, LENTON T M, et al. Future of the human climate niche[J]. PNAS, 2020, 117(21): 11350-11355.
|
2 |
巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285.
|
|
GONG Jinlong. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285.
|
3 |
周威, 郭君康, 申升, 等. 光电催化二氧化碳还原研究进展[J]. 物理化学学报, 2020, 36(3): 71-81.
|
|
ZHOU Wei, GUO Junkang, SHEN Sheng, et al. Progress in photoelectrocatalytic reduction of carbon dioxide[J]. Acta Physico-Chimica Sinica, 2020, 36(3): 71-81.
|
4 |
陈庆云, 周苗, 王云海. BiVO4光催化剂的合成及其可见光下还原二氧化碳[J]. 化工进展, 2010, 29(S1): 443-445.
|
|
CHEN Qingyun, ZHOU Miao, WANG Yunhai. Synthesis of BiVO4 photocatalyst and reduction of carbon dioxide under visible light[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 443-445.
|
5 |
SASTRE F, PUGA A V, LIU L C, et al. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation[J]. Journal of the American Chemical Society, 2014, 136(19): 6798-6801.
|
6 |
JIANG X, NIE X W, GUO X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034.
|
7 |
王丽敏, 王利清, 张一弛, 等. 光热协同催化技术在能源领域的应用[J]. 化工进展, 2017, 36(7): 2457-2463.
|
|
WANG Limin, WANG Liqing, ZHANG Yichi, et al. Photothermal synergistic catalytic technology in energy field[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2457-2463.
|
8 |
WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703.
|
9 |
LI P Y, LIU L, AN W J, et al. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO2 to ethanol[J]. Applied Catalysis B: Environmental, 2020, 266: 118618.
|
10 |
YAN J Y, WANG C H, MA H, et al. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction[J]. Applied Catalysis B: Environmental, 2020, 268: 118401.
|
11 |
YU F, WANG C H, MA H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J]. Nanoscale, 2020, 12(13): 7000-7010.
|
12 |
MENG X G, WANG T, LIU L Q, et al. Photothermal conversion of CO2 into CH4 with H2 over Group Ⅷ nanocatalysts: an alternative approach for solar fuel production[J]. Angewandte Chemie International Edition, 2014, 53(43): 11478-11482.
|
13 |
XU C Y, HUANG W H, LI Z, et al. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2[J]. ACS Catalysis, 2018, 8(7): 6582-6593.
|
14 |
WEI G H, ZHENG D M, XU L J, et al. Photothermal catalytic activity and mechanism of LaNixCo1-xO3(0≤x≤1) perovskites for CO2 reduction to CH4 and CH3OH with H2O[J]. Materials Research Express, 2019, 6(8): 086221.
|
15 |
赵晨辰, 何向明, 王莉, 等. 电化学还原CO2阴极材料研究进展[J]. 化工进展, 2013, 32(2): 373-380.
|
|
ZHAO Chenchen, HE Xiangming, WANG Li, et al. Progress of cathode materials for electrochemical reduction of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 373-380.
|
16 |
陈钱, 匡勤, 谢兆雄. 二维材料在光催化二氧化碳还原中的研究进展[J]. 化学学报, 2021, 79(1): 10-22.
|
|
CHEN Qian, KUANG Qin, XIE Zhaoxiong. Research progress of photocatalytic CO2 reduction based on two-dimensional materials[J]. Acta Chimica Sinica, 2021, 79(1): 10-22.
|
17 |
王路喜, 杨芳麒, 林欢欢, 等. Cu修饰的多孔碳材料高效电化学还原CO2为CO[J]. 化工进展, 2020, 39(9): 3685-3691.
|
|
WANG Luxi, YANG Fangqi, LIN Huanhuan, et al. Electrochemical reduction of CO2 to CO by Cu modified porous carbon materials[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3685-3691.
|
18 |
LI Dashuai, HUANG Yu, LI Songmei, et al. Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2[J]. Chinese Journal of Catalysis, 2020, 41(1): 154-160.
|
19 |
ZHAO Ziyan, DORONKIN D E, YE Yinghao, et al. Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2020, 41(2): 286-295.
|
20 |
QI Y H, SONG L Z, OUYANG S X, et al. Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies[J]. Advanced Materials, 2020, 32(6): 1903915.
|
21 |
HOCH L B, O’BRIEN P G, JELLE A, et al. Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels[J]. ACS Nano, 2016, 10(9): 9017-9025.
|
22 |
LIU G G, MENG X G, ZHANG H B, et al. Elemental boron for efficient carbon dioxide reduction under light irradiation[J]. Angewandte Chemie International Edtion, 2017, 129(20): 5662-5666.
|
23 |
LOW J, ZHANG L Y, ZHU B C, et al. TiO2Photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15653-15661.
|
24 |
WANG L C, WANG Y, CHENG Y, et al. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance[J]. Journal of Materials Chemistry A, 2016, 4(14): 5314-5322.
|
25 |
KHO E T, JANTARANG S, ZHENG Z K, et al. Harnessing the beneficial attributes of ceria and titania in a mixed-oxide support for nickel-catalyzed photothermal CO2 methanation[J]. Engineering, 2017, 3(3): 393-401.
|
26 |
JANTARANG S, LOVELL E C, TAN T H, et al. Role of support in photothermal carbon dioxide hydrogenation catalysed by Ni/CexTiyO2[J]. Progress in Natural Science: Materials International, 2018, 28(2): 168-177.
|
27 |
李炳杰, 吴志坚, 陈澍, 等. Ni/Zn/Cr系复合金属氧化物的制备及其光催化还原二氧化碳性能研究[J]. 分子催化, 2014, 28(3): 268-274.
|
|
LI Bingjie, WU Zhijian, CHEN Shu, et al. Preparation and photocatalytic CO2 reduction activity of Ni/Zn/Cr composite metal oxides[J]. Journal of Molecular Catalysis, 2014, 28(3): 268-274.
|
28 |
XU M, HU X T, WANG S L, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. Journal of Catalysis, 2019, 377: 652-661.
|
29 |
LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10(12): 911-921.
|
30 |
MASCARETTI L, DUTTA A, KMENT Š, et al. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage[J]. Advanced Materials, 2019, 31(31): 1805513.
|
31 |
CHIU Y H, CHANG K D, HSU Y J. Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals[J]. Journal of Materials Chemistry A, 2018, 6(10): 4286-4296.
|
32 |
WANG J, PAN S L, CHEN M Y, et al. Gold nanorod-enhanced light absorption and photoelectrochemical performance of α-Fe2O3 thin-film electrode for solar water splitting[J]. The Journal of Physical Chemistry C, 2013, 117(42): 22060-22068.
|
33 |
WU D D, DENG K X, HU B, et al. Plasmon-assisted photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst[J]. ChemCatChem, 2019, 11(6): 1598-1601.
|
34 |
JIANG Z K, LI Y Z, ZHANG Q, et al. A novel nanocomposite of mesoporous silica supported Ni nanocrystals modified by ceria clusters with extremely high light-to-fuel efficiency for UV-vis-IR light-driven CO2 reduction[J]. Journal of Materials Chemistry A, 2019, 7(9): 4881-4892.
|
35 |
LI J, YE Y H, YE L Q, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x[J]. Journal of Materials Chemistry A, 2019, 7(6): 2821-2830.
|
36 |
张继宏, 钟地长, 鲁统部. 钴(Ⅱ)基分子配合物用于光催化二氧化碳还原[J]. 物理化学学报, 2021, 37(5): 111-125.
|
|
ZHANG Jihong, ZHONG Dichang, LU Tongbu. Co(Ⅱ)-based molecular complexes for photochemical CO2 reduction[J]. Acta Physico-Chimica Sinica, 2021, 37(5): 111-125.
|
37 |
吴进, 刘京, 夏雾, 等. 基于CdS和CdSe纳米半导体材料的可见光催化二氧化碳还原研究进展[J]. 物理化学学报, 2021, 37(5): 103-110.
|
|
WU Jin, LIU Jing, XIA Wu, et al. Advances on photocatalytic CO2 reduction based on CdS and CdSe nano-semiconductors[J]. Acta Physico-Chimica Sinica, 2021, 37(5): 103-110.
|
38 |
常晓侠, 巩金龙. 表面反应在半导体光催化水分解过程中的重要性[J]. 物理化学学报, 2016, 32(1): 2-13.
|
|
CHANG Xiaoxia, GONG Jinlong. On the importance of surface reactions on semiconductor photocatalysts for solar water splitting[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 2-13.
|
39 |
ZHONG J W, YANG X F, WU Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
|
40 |
林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展[J]. 南方能源建设, 2020, 7(2): 14-19.
|
|
LIN Haizhou, LUO Zhibin, PEI Aiguo, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen[J]. Southern Energy Construction, 2020, 7(2): 14-19.
|