1 |
SCHMID A , DORDICK J S , HAUER B , et al . Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409(6817): 258-268.
|
2 |
BORNSCHEUER U T , HUISMAN G W , KAZLAUSKAS R J , et al . Engineering the third wave of biocatalysis[J]. Nature, 2012, 485(7397): 185-194.
|
3 |
许可, 吕波,李春 . 无细胞的合成生物技术——多酶催化与生物合成[J]. 中国科学: 化学, 2015, 45(5): 429-437.
|
|
XU K , LV B , LI C . Cell-free synthetic biotechnology—multi-enzyme catalysis and biosynthesis[J]. Scientia Sinica: Chimica, 2015, 45(5): 429-437.
|
4 |
SHELDON R A , WOODLEY J M . Role of biocatalysis in sustainable chemistry[J]. Chemical Reviews, 2018, 118(2): 801-838.
|
5 |
王景昌, 商雪航, 王卫京, 等 . 酶催化合成脂肪族聚酯的研究进展[J]. 化工进展, 2017, 36(7): 2592-2600.
|
|
WANG J C , SHANG X H , WANG W J , et al . Review on enzymatic synthesis of aliphatic polyester[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2592-2600.
|
6 |
THOMAS S M , DICOSIMO R , NAGARAJAN V . Biocatalysis: applications and potentials for the chemical industry[J]. Trends in Biotechnology, 2002, 20(6): 238-242.
|
7 |
欧阳平凯,冯娇,许晟 . 生物制造研究进展[J]. 广西科学, 2016, 23(2): 97-101.
|
|
OUYANG P K , FENG J , XU S , et al . Recent advances in biological manufacturing[J]. Guangxi Sciences, 2016, 23(2):97-101.
|
8 |
刘大江, 裘建龙 . 精细化工产品的技术改造及开发策略探析[J]. 当代化工研究, 2017(3): 1-2.
|
|
LIU D J , QIU J L . Analysis of the technical reform and development strategies for fine chemical engineering products[J]. Modern Chemical Research, 2017(3): 1-2.
|
9 |
STRAATHOF A J , PANKE S , SCHMID A . The production of fine chemicals by biotransformations[J]. Curr. Opin. Biotechnol., 2002, 13(6): 548-556.
|
10 |
BEZBRADICA D , COROVIC M , TANASKOVIC S J , et al . Enzymatic syntheses of esters-green chemistry for valuable food, fuel and fine chemicals[J]. Current Organic Chemistry, 2017, 21(2): 104-138.
|
11 |
REETZ M T , PRASAD S , CARBALLEIRA J D , et al . Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods[J]. Journal of the American Chemical Society, 2010, 132(26): 9144.
|
12 |
LEE E Y , YOO S S , KIM H S , et al . Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis [J]. Enzyme and Microbial Technology, 2004, 35(6-7): 624-631.
|
13 |
YOO S S , PARK S , LEE E Y . Enantioselective resolution of racemic styrene oxide at high concentration using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis in the presence of surfactant and glycerol[J]. Biotechnology Letters, 2008, 30(10): 1807-1810.
|
14 |
MONTERDE M I , LOMBARD M , ARCHELAS A , et al . Enzymatic transformations. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase[J]. Tetrahedron: Asymmetry, 2004, 15(18): 2801-2805.
|
15 |
KARBOUNE S , ARCHELAS A , BARATTI J . Properties of epoxide hydrolase from Aspergillus niger for the hydrolytic kinetic resolution of epoxides in pure organic media[J]. Enzyme & Microbial Technology, 2006, 39(2): 318-324.
|
16 |
CHEN Y , GOLDBERG S L , HANSON R L , et al . Enzymatic preparation of an (S)-amino acid from a racemic amino acid[J]. Organic Process Research & Development, 2011, 15(1): 241-248.
|
17 |
FRAILE J M , GARCı́A J I , HERRERı́AS C I , et al . Enantioselective cyclopropanation reactions in ionic liquids[J]. Tetrahedron: Asymmetry, 2001, 12(13): 1891-1894.
|
18 |
SAKURAMA H , KISHINO S , UCHIBORI Y , et al . β- Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30[J]. Appl. Microbiol. Biotechnol., 2014, 98(9): 4021-4032.
|
19 |
CHOI Y B , KIM K S , RHEE J S . Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria[J]. Biotechnology Letters, 2002, 24(24): 2113-2116.
|
20 |
谢明杰, 石姗姗, 卢明春, 等 . 酶法水解大豆异黄酮[J]. 食品与发酵工业, 2004, 30(3): 21-24.
|
|
XIE MINGJIE , SHI SHANSHAN , LU MINGCHUN , et al . Enzymolysis condition of soybean isflavone glucoside[J]. Food and Fermentation Industries, 2004, 30(3): 21-24.
|
21 |
YOSIOKA I , SAIJOH S , KITAGAWA I . Soil bacterial hydrolysis leading to genuine aglycone Ⅳ. Four acylated derivatives of barringtogenol C from jegosaponin[J]. Chemical & Pharmaceutical Bulletin, 1972, 20(3): 564-569.
|
22 |
FENG X D , TANG H , HAN B , et al . Enhancing the thermostability of β-glucuronidase by rationally redesigning the catalytic domain based on sequence alignment strategy[J]. Industrial & Engineering Chemistry Research, 2016, 55(19): 5474-5483.
|
23 |
FENG X , TANG H , HAN B , et al . Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant[J]. Applied Microbiology & Biotechnology, 2016, 100(23): 1-12.
|
24 |
冯旭东, 吕波, 李春 . 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1): 277-284.
|
|
FENG X D , LÜ B , LI C . Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1): 277-284.
|
25 |
KAISER E T . Catalytic activity of enzymes altered at their active sites[J]. Angewandte Chemie International Edition, 1988, 27(7): 913-922.
|
26 |
DESANTIS G , BERGLUND P , STABILE M R , et al . Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1' pockets of subtilisin Bacillus lentus[J]. Biochemistry, 1998, 37(17): 5968.
|
27 |
YAMASHITA H , NAKATANI H , TONOMURA B . Change of substrate specificity by chemical modification of lysine residues of porcine pancreatic alpha-amylase[J]. Biochimica et Biophysica Acta (BBA): Protein Structure and Molecular Enzymology, 1993, 1202(1): 129-134.
|
28 |
LU W C , LEVY M , KINCAID R , et al . Directed evolution of the substrate specificity of biotin ligase[J]. Biotechnology & Bioengineering, 2014, 111(6): 1071-1081.
|
29 |
LV B , SUN H , HUANG S , et al . Structure-guided engineering of the substrate specificity of a fungal beta-glucuronidase toward triterpenoid saponins[J]. The Journal of Biological Chemistry, 2018, 293(2): 433-443.
|
30 |
TAYLOR J L , PRICE J E , TONEY M D . Directed evolution of the substrate specificity of dialkylglycine decarboxylase[J]. Biochimica et Biophysica Acta, 2015, 1854(2): 146-155.
|
31 |
NG T K , GAHAN L R , SCHENK G , et al . Altering the substrate specificity of methyl parathion hydrolase with directed evolution[J]. Archives of Biochemistry and Biophysics, 2015, 573: 59-68.
|
32 |
邵泽香, 焦琳舒, 陆兆新, 等 . 基于定向进化技术提高地衣芽孢杆菌L-天冬酰胺酶活性[J]. 食品科学, 2017, 38(22): 8-13.
|
|
SHAO Zexing , JIAO Linshu , LU Zhaoxin , et al . Improving L-asparaginase activity from bacillus licheniformis by directed evolution[J]. Food Science, 2017, 38(22): 8-13.
|
33 |
ZHENG M M , CHEN K C , WANG R F , et al . Engineering 7 β -hydroxysteroid dehydrogenase for enhanced ursodeoxycholic acid production by multiobjective directed evolution[J]. Journal of Agricultural and Food Chemistry, 2017, 65(6): 1178-1185.
|
34 |
LAN D , WANG Q , XU J , et al . Residue Asn277 affects the stability and substrate specificity of the SMG1 lipase from Malassezia globosa [J]. International Journal of Molecular Sciences, 2015, 16(4): 7273-7288.
|
35 |
CHEN F F , ZHENG G W , LIU L , et al . Reshaping the active pocket of amine dehydrogenases for asymmetric synthesis of bulky aliphatic amines[J]. ACS Catalysis, 2018, 8(3): 2622-2628.
|
36 |
NIE Y , WANG S , XU Y , et al . Enzyme engineering based on X-ray structures and kinetic profiling of substrate libraries: alcohol dehydrogenases for stereospecific synthesis of a broad range of chiral alcohols[J]. ACS Catalysis, 2018, 8(6): 5145-5152.
|
37 |
YANG B , WANG H , SONG W , et al . Engineering of the conformational dynamics of lipase to increase enantioselectivity[J]. ACS Catalysis, 2017, 7(11): 7593-7599.
|
38 |
CHEN G S , SIAO S W , SHEN C R . Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle[J]. Scientific Reports, 2017, 7(1): 28900255
|
39 |
FURUYA T , SHITASHIMA Y , KINO K . Alteration of the substrate specificity of cytochrome P450 CYP199A2 by site-directed mutagenesis[J]. Journal of Bioscience and Bioengineering, 2015, 119(1): 47-51.
|
40 |
FOUMANI M , VUONG T V , MASTER E R . Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum [J]. Biotechnology and Bioengineering, 2011, 108(10): 2261-2269.
|
41 |
FERRARI A R , LEE M , FRAAIJE M W . Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure‐inspired mutagenesis[J]. Biotechnology & Bioengineering, 2015, 112(6): 1074-1080.
|
42 |
GRISEWOOD M J , HERNANDEZ LOZADA N J , THODEN J B , et al . Computational redesign of Acyl-ACP thioesterase with improved selectivity toward medium-chain-length fatty acids[J]. ACS Catal., 2017, 7(6): 3837-3849.
|
43 |
DURAND J , BIARN S X , WATTERLOT L , et al . A single point mutation alters the transglycosylation/hydrolysis partition, significantly enhancing the synthetic capability of an endo-glycoceramidase[J]. ACS Catalysis, 2016, 6(12): 8264-8275.
|
44 |
BISSARO B , DURAND J , BIARN S X , et al . Molecular design of non-leloir furanose-transferring enzymes from an α-l- arabinofuranosidase: a rationale for the engineering of evolved transglycosylases[J]. ACS Catalysis, 2015, 5(8): 4598-4611.
|
45 |
RAICH L , BORODKIN V , FANG W , et al . A Trapped Covalent Intermediate of a glycoside hydrolase on the pathway to transglycosylation. insights from experiments and quantum mechanics/molecular mechanics simulations[J].
|
|
Am J. . Chem. Soc., 2016, 138(10): 3325-3332.
|
46 |
POZZO T , ROMERO-GARCIA J , FAIJES M , et al . Rational design of a thermostable glycoside hydrolase from family 3 introduces beta-glycosynthase activity[J]. Glycobiology, 2017, 27(2): 165-175.
|
47 |
DAVID B , IRAGUE R , JOUANNEAU D , et al . Internal water dynamics control the transglycosylation/hydrolysis balance in the agarase (AgaD) of Zobellia galactanivorans [J]. ACS Catalysis, 2017, 7(5): 3357-3367.
|
48 |
SEEBECK F P , HILVERT D . Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation[J]. Journal of the American Chemical Society, 2003, 125(34): 10158-10159.
|