化工进展 ›› 2019, Vol. 38 ›› Issue (01): 606-614.DOI: 10.16085/j.issn.1000-6613.2018-1136
收稿日期:
2018-05-31
修回日期:
2018-08-23
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
李春
作者简介:
姜恬(1993—),女,硕士研究生,研究方向为酶工程。E-mail:<email>jiangtiantian1002@163.com</email>。|李春,教授,博士生导师,研究方向为生物催化与酶工程、代谢工程与合成生物学。E-mail:<email>lichun@bit.edu.cn</email>。
基金资助:
Tian JIANG1(),Xudong FENG2,Yan LI1,Chu LI1,2(
)
Received:
2018-05-31
Revised:
2018-08-23
Online:
2019-01-05
Published:
2019-01-05
Contact:
Chu LI
摘要:
随着生物产业的发展,生物酶催化发挥着越来越重要的作用。然而,部分酶在应用过程中仍然存在诸多问题,影响了生物催化的进一步发展。本文以酶的底物特异性为切入点,回顾了酶的专一性、高效性和环保性;介绍了酶在药物合成和天然产物改性领域的应用以及所遇到的问题;综述了酶的底物特异性改造过程中各种方法的应用,包括化学修饰、非理性和理性设计。化学修饰作为一种直观的修饰方法,通过化学反应对酶分子进行改造;非理性设计是利用易错PCR和DNA Shuffling等手段获得底物特异性提高的突变体;理性设计是基于序列和结构信息对酶分子进行改造。本文从重塑活性口袋提高酶的底物特异性和重塑活性口袋改变酶促反应类型两个方面出发,详述了理性设计改变酶的底物特异性的方法,为酶的特异性改造提供借鉴。
中图分类号:
姜恬, 冯旭东, 李岩, 李春. 底物特异性的生物催化与酶设计改造[J]. 化工进展, 2019, 38(01): 606-614.
Tian JIANG, Xudong FENG, Yan LI, Chu LI. The biocatalysis and enzyme modification of substrate specificity[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 606-614.
问题 | 后果 |
---|---|
酶的不足 | 稳定性差,底物特异性差 |
工艺限制 | 高温发酵受限,产物不单一 |
应用限制 | 染菌风险大,产物分离纯化困难 |
表1 酶催化过程中存在的问题
问题 | 后果 |
---|---|
酶的不足 | 稳定性差,底物特异性差 |
工艺限制 | 高温发酵受限,产物不单一 |
应用限制 | 染菌风险大,产物分离纯化困难 |
1 | SCHMID A , DORDICK J S , HAUER B , et al . Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409(6817): 258-268. |
2 | BORNSCHEUER U T , HUISMAN G W , KAZLAUSKAS R J , et al . Engineering the third wave of biocatalysis[J]. Nature, 2012, 485(7397): 185-194. |
3 | 许可, 吕波,李春 . 无细胞的合成生物技术——多酶催化与生物合成[J]. 中国科学: 化学, 2015, 45(5): 429-437. |
XU K , LV B , LI C . Cell-free synthetic biotechnology—multi-enzyme catalysis and biosynthesis[J]. Scientia Sinica: Chimica, 2015, 45(5): 429-437. | |
4 | SHELDON R A , WOODLEY J M . Role of biocatalysis in sustainable chemistry[J]. Chemical Reviews, 2018, 118(2): 801-838. |
5 | 王景昌, 商雪航, 王卫京, 等 . 酶催化合成脂肪族聚酯的研究进展[J]. 化工进展, 2017, 36(7): 2592-2600. |
WANG J C , SHANG X H , WANG W J , et al . Review on enzymatic synthesis of aliphatic polyester[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2592-2600. | |
6 | THOMAS S M , DICOSIMO R , NAGARAJAN V . Biocatalysis: applications and potentials for the chemical industry[J]. Trends in Biotechnology, 2002, 20(6): 238-242. |
7 | 欧阳平凯,冯娇,许晟 . 生物制造研究进展[J]. 广西科学, 2016, 23(2): 97-101. |
OUYANG P K , FENG J , XU S , et al . Recent advances in biological manufacturing[J]. Guangxi Sciences, 2016, 23(2):97-101. | |
8 | 刘大江, 裘建龙 . 精细化工产品的技术改造及开发策略探析[J]. 当代化工研究, 2017(3): 1-2. |
LIU D J , QIU J L . Analysis of the technical reform and development strategies for fine chemical engineering products[J]. Modern Chemical Research, 2017(3): 1-2. | |
9 | STRAATHOF A J , PANKE S , SCHMID A . The production of fine chemicals by biotransformations[J]. Curr. Opin. Biotechnol., 2002, 13(6): 548-556. |
10 | BEZBRADICA D , COROVIC M , TANASKOVIC S J , et al . Enzymatic syntheses of esters-green chemistry for valuable food, fuel and fine chemicals[J]. Current Organic Chemistry, 2017, 21(2): 104-138. |
11 | REETZ M T , PRASAD S , CARBALLEIRA J D , et al . Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods[J]. Journal of the American Chemical Society, 2010, 132(26): 9144. |
12 | LEE E Y , YOO S S , KIM H S , et al . Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis [J]. Enzyme and Microbial Technology, 2004, 35(6-7): 624-631. |
13 | YOO S S , PARK S , LEE E Y . Enantioselective resolution of racemic styrene oxide at high concentration using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis in the presence of surfactant and glycerol[J]. Biotechnology Letters, 2008, 30(10): 1807-1810. |
14 | MONTERDE M I , LOMBARD M , ARCHELAS A , et al . Enzymatic transformations. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase[J]. Tetrahedron: Asymmetry, 2004, 15(18): 2801-2805. |
15 | KARBOUNE S , ARCHELAS A , BARATTI J . Properties of epoxide hydrolase from Aspergillus niger for the hydrolytic kinetic resolution of epoxides in pure organic media[J]. Enzyme & Microbial Technology, 2006, 39(2): 318-324. |
16 | CHEN Y , GOLDBERG S L , HANSON R L , et al . Enzymatic preparation of an (S)-amino acid from a racemic amino acid[J]. Organic Process Research & Development, 2011, 15(1): 241-248. |
17 | FRAILE J M , GARCı́A J I , HERRERı́AS C I , et al . Enantioselective cyclopropanation reactions in ionic liquids[J]. Tetrahedron: Asymmetry, 2001, 12(13): 1891-1894. |
18 | SAKURAMA H , KISHINO S , UCHIBORI Y , et al . β- Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30[J]. Appl. Microbiol. Biotechnol., 2014, 98(9): 4021-4032. |
19 | CHOI Y B , KIM K S , RHEE J S . Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria[J]. Biotechnology Letters, 2002, 24(24): 2113-2116. |
20 | 谢明杰, 石姗姗, 卢明春, 等 . 酶法水解大豆异黄酮[J]. 食品与发酵工业, 2004, 30(3): 21-24. |
XIE MINGJIE , SHI SHANSHAN , LU MINGCHUN , et al . Enzymolysis condition of soybean isflavone glucoside[J]. Food and Fermentation Industries, 2004, 30(3): 21-24. | |
21 | YOSIOKA I , SAIJOH S , KITAGAWA I . Soil bacterial hydrolysis leading to genuine aglycone Ⅳ. Four acylated derivatives of barringtogenol C from jegosaponin[J]. Chemical & Pharmaceutical Bulletin, 1972, 20(3): 564-569. |
22 | FENG X D , TANG H , HAN B , et al . Enhancing the thermostability of β-glucuronidase by rationally redesigning the catalytic domain based on sequence alignment strategy[J]. Industrial & Engineering Chemistry Research, 2016, 55(19): 5474-5483. |
23 | FENG X , TANG H , HAN B , et al . Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant[J]. Applied Microbiology & Biotechnology, 2016, 100(23): 1-12. |
24 | 冯旭东, 吕波, 李春 . 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1): 277-284. |
FENG X D , LÜ B , LI C . Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1): 277-284. | |
25 | KAISER E T . Catalytic activity of enzymes altered at their active sites[J]. Angewandte Chemie International Edition, 1988, 27(7): 913-922. |
26 | DESANTIS G , BERGLUND P , STABILE M R , et al . Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1' pockets of subtilisin Bacillus lentus[J]. Biochemistry, 1998, 37(17): 5968. |
27 | YAMASHITA H , NAKATANI H , TONOMURA B . Change of substrate specificity by chemical modification of lysine residues of porcine pancreatic alpha-amylase[J]. Biochimica et Biophysica Acta (BBA): Protein Structure and Molecular Enzymology, 1993, 1202(1): 129-134. |
28 | LU W C , LEVY M , KINCAID R , et al . Directed evolution of the substrate specificity of biotin ligase[J]. Biotechnology & Bioengineering, 2014, 111(6): 1071-1081. |
29 | LV B , SUN H , HUANG S , et al . Structure-guided engineering of the substrate specificity of a fungal beta-glucuronidase toward triterpenoid saponins[J]. The Journal of Biological Chemistry, 2018, 293(2): 433-443. |
30 | TAYLOR J L , PRICE J E , TONEY M D . Directed evolution of the substrate specificity of dialkylglycine decarboxylase[J]. Biochimica et Biophysica Acta, 2015, 1854(2): 146-155. |
31 | NG T K , GAHAN L R , SCHENK G , et al . Altering the substrate specificity of methyl parathion hydrolase with directed evolution[J]. Archives of Biochemistry and Biophysics, 2015, 573: 59-68. |
32 | 邵泽香, 焦琳舒, 陆兆新, 等 . 基于定向进化技术提高地衣芽孢杆菌L-天冬酰胺酶活性[J]. 食品科学, 2017, 38(22): 8-13. |
SHAO Zexing , JIAO Linshu , LU Zhaoxin , et al . Improving L-asparaginase activity from bacillus licheniformis by directed evolution[J]. Food Science, 2017, 38(22): 8-13. | |
33 | ZHENG M M , CHEN K C , WANG R F , et al . Engineering 7 β -hydroxysteroid dehydrogenase for enhanced ursodeoxycholic acid production by multiobjective directed evolution[J]. Journal of Agricultural and Food Chemistry, 2017, 65(6): 1178-1185. |
34 | LAN D , WANG Q , XU J , et al . Residue Asn277 affects the stability and substrate specificity of the SMG1 lipase from Malassezia globosa [J]. International Journal of Molecular Sciences, 2015, 16(4): 7273-7288. |
35 | CHEN F F , ZHENG G W , LIU L , et al . Reshaping the active pocket of amine dehydrogenases for asymmetric synthesis of bulky aliphatic amines[J]. ACS Catalysis, 2018, 8(3): 2622-2628. |
36 | NIE Y , WANG S , XU Y , et al . Enzyme engineering based on X-ray structures and kinetic profiling of substrate libraries: alcohol dehydrogenases for stereospecific synthesis of a broad range of chiral alcohols[J]. ACS Catalysis, 2018, 8(6): 5145-5152. |
37 | YANG B , WANG H , SONG W , et al . Engineering of the conformational dynamics of lipase to increase enantioselectivity[J]. ACS Catalysis, 2017, 7(11): 7593-7599. |
38 | CHEN G S , SIAO S W , SHEN C R . Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle[J]. Scientific Reports, 2017, 7(1): 28900255 |
39 | FURUYA T , SHITASHIMA Y , KINO K . Alteration of the substrate specificity of cytochrome P450 CYP199A2 by site-directed mutagenesis[J]. Journal of Bioscience and Bioengineering, 2015, 119(1): 47-51. |
40 | FOUMANI M , VUONG T V , MASTER E R . Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum [J]. Biotechnology and Bioengineering, 2011, 108(10): 2261-2269. |
41 | FERRARI A R , LEE M , FRAAIJE M W . Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure‐inspired mutagenesis[J]. Biotechnology & Bioengineering, 2015, 112(6): 1074-1080. |
42 | GRISEWOOD M J , HERNANDEZ LOZADA N J , THODEN J B , et al . Computational redesign of Acyl-ACP thioesterase with improved selectivity toward medium-chain-length fatty acids[J]. ACS Catal., 2017, 7(6): 3837-3849. |
43 | DURAND J , BIARN S X , WATTERLOT L , et al . A single point mutation alters the transglycosylation/hydrolysis partition, significantly enhancing the synthetic capability of an endo-glycoceramidase[J]. ACS Catalysis, 2016, 6(12): 8264-8275. |
44 | BISSARO B , DURAND J , BIARN S X , et al . Molecular design of non-leloir furanose-transferring enzymes from an α-l- arabinofuranosidase: a rationale for the engineering of evolved transglycosylases[J]. ACS Catalysis, 2015, 5(8): 4598-4611. |
45 | RAICH L , BORODKIN V , FANG W , et al . A Trapped Covalent Intermediate of a glycoside hydrolase on the pathway to transglycosylation. insights from experiments and quantum mechanics/molecular mechanics simulations[J]. |
Am J. . Chem. Soc., 2016, 138(10): 3325-3332. | |
46 | POZZO T , ROMERO-GARCIA J , FAIJES M , et al . Rational design of a thermostable glycoside hydrolase from family 3 introduces beta-glycosynthase activity[J]. Glycobiology, 2017, 27(2): 165-175. |
47 | DAVID B , IRAGUE R , JOUANNEAU D , et al . Internal water dynamics control the transglycosylation/hydrolysis balance in the agarase (AgaD) of Zobellia galactanivorans [J]. ACS Catalysis, 2017, 7(5): 3357-3367. |
48 | SEEBECK F P , HILVERT D . Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation[J]. Journal of the American Chemical Society, 2003, 125(34): 10158-10159. |
[1] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[2] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[3] | 孟令玎, 毛梦雷, 廖奇勇, 孟子晖, 刘文芳. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
[4] | 高博, 冯旭东, 李春. 可视化高通量检测天冬氨酸转氨甲酰酶活性的方法[J]. 化工进展, 2022, 41(4): 2054-2059. |
[5] | 张彦, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028. |
[6] | 鲁泽平, 裴新华, 薛誉, 张晓光, 胡燚. 甜菜碱类离子液体化学修饰猪胰脂肪酶提升其酶学性能[J]. 化工进展, 2022, 41(11): 6045-6052. |
[7] | 李庆远, 王超, 许世佩, 张雪琴, 邱明建, 刘梦瑶, 丛梦晓. PBS前体1,4-丁二醇合成的反应工艺和催化剂研究进展[J]. 化工进展, 2022, 41(11): 5771-5782. |
[8] | 李青, 刘武军, 郭潇佳, 王倩, 赵宗保. 手性NAD类似物合成及其辅酶应用[J]. 化工进展, 2021, 40(9): 5214-5221. |
[9] | 张晓健, 刘倩, 柳志强, 郑裕国. 立体选择性羰基还原酶及其在手性醇合成中的应用[J]. 化工进展, 2021, 40(3): 1142-1160. |
[10] | 居述云, 吴坚平, 杨立荣. D-氨基酸氧化酶的分子改造及应用研究进展[J]. 化工进展, 2021, 40(3): 1215-1225. |
[11] | 赵婧, 王盼, 刘彦楠, 傅荣湛, 段志广, 范代娣. 人参皂苷的定向生物转化研究进展[J]. 化工进展, 2021, 40(3): 1238-1247. |
[12] | 林朱凡, 成少安, 毛政中, 顾若男, 羊家威. 生物电化学脱氮系统构建和影响因素的最新研究进展[J]. 化工进展, 2020, 39(9): 3766-3776. |
[13] | 王琛, 赵猛, 丁明珠, 王颖, 姚明东, 肖文海. 生物支架系统在合成生物学中的应用[J]. 化工进展, 2020, 39(11): 4557-4567. |
[14] | 朱诚,许国超,戴威,周婕妤,倪晔. 醇脱氢酶KpADH的127位点对催化活性和对映选择性的影响[J]. 化工进展, 2019, 38(12): 5504-5511. |
[15] | 于波, 刘超, 刘金东, 丁万昱, 柴卫平. 介孔磷酸锆固体酸催化剂的制备及其催化性能[J]. 化工进展, 2018, 37(06): 2236-2241. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1824
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 866
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |