1 |
PEMBERTON T A , CHEN M B , HARRIS G G , et al .Exploring the influence of domain architecture on the catalytic function of diterpene synthases[J].Biochemistry, 2017, 56(14): 2010-2023.
|
2 |
VANEGAS K G , LEHKA B J , MORTENSEN U H .SWITCH:a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae [J].Microbial Cell Factories, 2017, 16(1): 25.
|
3 |
ALPER H , MIYAOKU K , STEPHANOPOULOS G .Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets[J].Nature Biotechnology, 2005, 23(5): 612-616.
|
4 |
ZHAO Y J , FAN J J , WANG C , et al . Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae [J].Bioresource Technology, 2018, 257:339-343.
|
5 |
KIM K A , LEE J S , PARK H J , et al .Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes[J].Life Sciences, 2004, 74(22): 2769-2779.
|
6 |
朱明, 王彩霞, 李春 . 工程化酿酒酵母合成植物三萜类化合物[J]. 化工学报, 2015, 66(9): 3350-3356.
|
|
ZHU M , WANG C X , LI C . Engineered Saccharomyces cerevisiae for biosynthesis of plant triterpenoids[J]. CIESC Journal, 2015, 66(9): 3350-3356.
|
7 |
CHAN W K , TAN L T H , CHAN K G , et al . Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities[J]. Molecules, 2016, 21(5): 529.
|
8 |
HU G Y , PENG C , XIE X F , et al . Availability, pharmaceutics, security, pharmacokinetics, and pharmacological activities of patchouli alcohol[J]. Evidence-Based Complementary and Alternative Medicine, 2017(4): 1-9.
|
9 |
PADDON C J , WESTFALL P J , PITERA D J , et al . High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532.
|
10 |
LIU J D , ZHANG W P , DU G C , et al . Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae [J]. Journal of Biotechnology, 2013, 168(4): 446-451.
|
11 |
TAKAHASHI S , YEO Y , GREENHAGEN B T , et al . Metabolic engineering of sesquiterpene metabolism in yeast[J]. Biotechnology and Bioengineering, 2007, 97(1): 170-181.
|
12 |
ENGELS B , DAHM P , JENNEWEIN S . Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production[J]. Metabolic Engineering, 2008, 10(3/4): 201-206.
|
13 |
DAI Z B , LIU Y , HUANG L Q , et al . Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2012, 109(11): 2845–2853.
|
14 |
GUO J , ZHOU Y J , HILLWIG M L , et al . CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J]. Proceedings of the National Academy of Sciences, 2013, 110(29): 12108-12113.
|
15 |
ZHANG G L , CAO Q , LIU J Z , et al . Refactoring β-amyrin synthesis in Saccharomyces cerevisiae [J]. AIChE Journal, 2015, 61(10): 3172-3179.
|
16 |
ZHU M , WANG C X , SUN W T , et al . Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45:43-50.
|
17 |
CHEN Y , XIAO W H , WANG Y , et al . Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J]. Microbial Cell Factories, 2016, 15(1): 113.
|
18 |
BOHLMANN J , MEYER-GAUEN G , CROTEAU R . Plant terpenoid synthases: molecular biology and phylogenetic analysis[J]. Proceedings of the National Academy of Sciences, 1998, 95(8): 4126-4133.
|
19 |
ZHAO J Z , BAO X M , LI C , et al . Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 2016, 100(10): 4561-4571.
|
20 |
JIANG G Z , YAO M D , WANG Y , et al . Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2017, 41:57-66.
|
21 |
SCHMIDT-DANNERT C , ARNOLD F H . Directed evolution of industrial enzymes[J]. Trends in Biotechnology, 1999, 17(4): 135-136.
|
22 |
XIE W P , LV X M , YE L D , et al . Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering[J]. Metabolic Engineering, 2015, 30:69-78.
|
23 |
WANG F , LV X M , XIE W P , et al . Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2016, 39:257-266.
|
24 |
ZHUANG Y , YANG G Y , CHEN X H , et al . Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metabolic Engineering, 2017, 42:25-32.
|
25 |
DING M Z , YAN H F , LI L F , et al . Biosynthesis of taxadiene in Saccharomyces cerevisiae:selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy[J]. PLoS One, 2014, 9(10): e109348.
|
26 |
LISCUM L , FINERMOORE J , STROUD R M , et al . Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum[J]. Journal of Biological Chemistry, 1985, 260(1): 522-530.
|
27 |
BASSON M E , THORSNESS M , FINER-MOORE J , et al . Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis[J]. Molecular and Cellular Biology., 1988, 8(9): 3797-3808.
|
28 |
POLAKOWSKI T , STAHL U , LANG C . Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast [J]. Applied Microbiology and Biotechnology, 1998, 49(1): 66-71.
|
29 |
KEASLING J D . Synthetic biology and the development of tools for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3): 189-195.
|
30 |
MANTZOURIDOU F , TSIMIDOU M Z . Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6[J]. FEMS Yeast Research, 2010, 10(6): 699-707.
|
31 |
LIAN J Z , SI T , NAIR N U , et al . Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains[J]. Metabolic Engineering, 2014, 24(7): 139-149.
|
32 |
CHEN Y , DAVIET L , SCHALK M , et al . Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metabolic Engineering, 2013, 15(1): 48-54.
|
33 |
FARHI M , MARHEVKA E , MASCI T , et al . Harnessing yeast subcellular compartments for the production of plant terpenoids[J]. Metabolic Engineering, 2011, 13(5): 474-481.
|
34 |
YUAN J F , CHING C B . Mitochondrial acetyl-CoA utilization pathway for terpenoid productions[J]. Metabolic Engineering, 2016, 38:303-309.
|
35 |
LV X M , WANG F , ZHOU P P , et al . Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae [J]. Nature Communications, 2016, 7:12851.
|
36 |
ARENDT P , MIETTINEN K , POLLIER J , et al . An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids[J]. Metabolic Engineering, 2017, 40:165-175.
|
37 |
ASADOLLAHI M A , MAURY J , MøLLER K , et al . Production of plant sesquiterpenes in Saccharomyces cerevisiae:effect of ERG9 repression on sesquiterpene biosynthesis[J]. Biotechnology and Bioengineering, 2008, 99(3): 666-677.
|
38 |
SCALCINATI G , PARTOW S , SIEWERS V , et al . Combined metabolic engineering of precursor and co-factor supply to increase α santalene production by Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2012, 11(1): 117.
|
39 |
PENG B Y , PLAN M R , CHRYSANTHOPOULOS P , et al . A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2016, 39:209-219.
|
40 |
CONG L , RAN F A , COX D , et al . Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
|
41 |
JAKOČIŪNAS T , BONDE I , HERRGåRD M , et al . Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28:213-222.
|
42 |
SHI S B , LIANG Y Y , ZHANG M M , et al . A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2016, 33:19-27.
|
43 |
BARBIERI E M , MUIR P , AKHUETIE-ONI B O , et al . Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes [J]. Cell, 2017, 171(6): 1453-1467.
|
44 |
ZALATAN J G , LEE M E , ALMEIDA R , et al . Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160(1/2): 339-350.
|
45 |
GILBERT L A , LARSON M H , MORSUT L , et al . CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451.
|
46 |
LIAN J Z , HAMEDIRAD M , HU S , et al . Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8(1): 1688.
|
47 |
DYMOND J S , RICHARDSON S M , COOMBES C E , et al . Synthetic chromosome arms function in yeast and generate phenotypic diversity by design [J]. Nature, 2011, 477(7365): 471-476.
|
48 |
SHEN Y , WANG Y , CHEN T , et al . Deep functional analysis of synII, a770 kb synthetic yeast chromosome[J]. Science, 2017, 355(6329): eaaf4791.
|
49 |
XIE Z X , LI B Z , MITCHELL L A , et al . "Perfect" designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329): eaaf4704.
|
50 |
MITCHELL L A , WANG A , STRACQUADANIO G , et al . Synthesis, debugging, and effects of synthetic chromosome consolidation:synⅥ and beyond[J]. Science, 2017, 355(6329): eaaf4831.
|
51 |
WU Y , LI B Z , ZHAO M , et al . Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science, 2017, 355(6329): eaaf4706.
|
52 |
ZHANG W M , ZHAO G H , LUO Z Q , et al . Engineering the ribosomal DNA in a megabase synthetic chromosome[J]. Science, 2017, 355(6329): eaaf3981.
|
53 |
ANNALURU N , MULLER H , MITCHELL L A , et al . Total synthesis of a functional designer eukaryotic chromosome[J]. Science, 2014, 344(6179): 55-58.
|
54 |
WU Y , ZHU R Y , MITCHELL L A , et al . In vitro DNA SCRaMbLE[J]. Nature Communications, 2018, 9(1): 1935.
|
55 |
SHEN M J , WU Y , YANG K , et al . Heterozygous diploid and interspecies SCRaMbLEing[J]. Nature Communications, 2018, 9(1): 1934.
|
56 |
LIU W , LUO Z Q , WANG Y , et al . Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods [J]. Nature Communications, 2018, 9(1): 1936.
|
57 |
JIA B , WU Y , LI B Z , et al . Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J]. Nature Communications, 2018, 9(1): 1933.
|