[1] ZHU Y H, LI J, LIU L, et al. Production of α-ketoisocaproate via free-whole-cell biotransformation by Rhodococcus opacus DSM 43250 with L-leucine as the substrate[J]. Enzyme and Microbial Technology, 2011, 49(4):321.
[2] VOGT M, HAAS S, POLEN T, et al. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes[J]. Microbial Biotechnology, 2015, 8(2):351-360.
[3] 祝玉洪, 刘龙, 周景文, 等. 不透明红球菌转化合成α-酮异己酸的培养条件优化[J]. 应用与环境生物学报, 2011, 17(4):553-557. ZHU Yuhong, LIU Long, ZHOU Jingwen, et al. Optimization of transformation and synthesis conditions of α-ketoisocaproate by Rhodococcus opacus DSM 43250[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(4):553-557.
[4] 程开花, 徐宏斌, 史丹丹, 等. α-酮酸及其盐的合成研究进展[J]. 现代生物医学进展, 2009, 9(6):1168-1170. CHENG Kaihua, XU Hongbin, SHI Dandan, et al. Research progress on synthesis of α-keto acid and its salts[J]. Progress in Modern Biomedicine, 2009, 9(6):1168-1170.
[5] BÜCKLE-VALLANT V, KRAUSE F S, MESSERSCHMIDT S, et al. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production[J]. Applied Microbiology and Biotechnology, 2014, 98(1):297-311.
[6] BARAZZONI R, MEEK S E, EKBERG K, et al. Arterial KIC as marker of liver and muscle intracellular leucine pools in healthy and type 1 diabetic humans[J]. American Journal of Physiology, 1999, 277(2):E238.
[7] ZANCHI N E, GERLINGER R F, GUIMARAES F L, et al. HMB supplementation:clinical and athletic performance-related effects and mechanisms of action[J]. Amino Acids, 2011, 40(4):1015-1025.
[8] ESCOBAR J, FRANK J W, SURYAWAN A, et al. Leucine and α-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs[J]. Journal of Nutrition, 2010, 140(8):1418.
[9] FLAKOLL P J, VANDEHAAR M J, KUHLMAN G, et al. Influence of α-ketoisocaproate on lamb growth feed conversion and carcass composition[J]. Journal of Animal Science, 1991, 69(4):1461.
[10] BELLIZZI V, CHIODINI P, CUPISTI A, et al. Very low-protein diet plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease:a historical cohort controlled study[J]. Nephrology Dialysis Transplantation, 2015, 30(1):71-7.
[11] CHANG J H, KIM D K, PARK J T, et al. Influence of ketoanalogs supplementation on the progression in chronic kidney disease patients who had training on low-protein diet[J]. Nephrology, 2009, 14(8):750-757.
[12] FOUQUE D, CHEN J, CHEN W, et al. Adherence to ketoacids/essential amino acids-supplemented low protein diets and new indications for patients with chronic kidney disease[J]. BMC Nephrology, 2016, 17(1):1-5.
[13] LECLERCQ-MEYER V, MARCHAND J, LECLERCQ R, et al. Interactions of α-ketoisocaproate, glucose and arginine in the secretion of glucagon and insulin from the perfused rat pancreas[J]. Diabetologia, 1979, 17(2):121.
[14] HEISSIG H, URBAN K A, HASTEDT K, et al. Mechanism of the insulin-releasing action of α-ketoisocaproate and related α-keto acid anions[J]. Molecular Pharmacology, 2005, 68(4):1097.
[15] ZHOU Y, JETTON T L, GOSHORN S, et al. Transamination is required for α-ketoisocaproate but not leucine to stimulate insulin secretion[J]. Journal of Biological Chemistry, 2010, 285(44):33718-33726.
[16] DICKINSON J R, LANTERMAN M M, DANNER D J, et al. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1997, 272(43):26871-26878.
[17] NISSEN S L, ABUMRAD N N. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB)[J]. Journal of Nutritional Biochemistry, 1997, 8(6):300-311.
[18] 乔璇, 张海军, 齐广海, 等. β-羟基-β-丁酸甲酯调控肌肉代谢的研究进展[J]. 动物营养学报, 2011, 23(12):2064-2070. QIAO Xuan, ZHANG Haijun, QI Guanghai, et al. Recent advances in β-hydroxy-β-methylbutyrate regulating muscle metabolism[J]. Chinese Journal of Animal Nutrition, 2011, 23(12):2064-2070.
[19] WILSON G J, WILSON J M, MANNINEN A H. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience:a review[J]. Nutrition and Metabolism, 2008, 5(1):1.
[20] SHREERAM S, RAMESH S, PUTHAN J K, et al. Age associated decline in the conversion of leucine to β-hydroxy-β-methylbutyrate in rats[J]. Experimental Gerontology, 2016, 80:6-11.
[21] VAN K M, NISSEN S. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo[J]. American Journal of Physiology, 1992, 262(1):E27.
[22] 堵国成, 宋阳, 刘龙, 等. α-酮酸的合成方法及应用研究[J]. 食品与生物技术学报, 2013, 32(11):1121-1127. DU Guocheng, SONG Yang, LIU Long, et al. Advances in production and application of α-keto acids[J]. Journal of Food Science and Biotechnology, 2013, 32(11):1121-1127.
[23] SONG Y, LI J, SHIN H D, et al. Biotechnological production of alpha-keto acids:current status and perspectives[J]. Bioresource Technology, 2016, 219:716-724.
[24] LEYVAL D, UY D, DELAUNAY S, et al. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum[J]. Journal of Biotechnology, 2003, 104(1/2/3):241-252.
[25] HOLATKO J, ELISAKOVA V, PROUZA M, et al. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation[J]. Journal of Biotechnology, 2009, 139(3):203.
[26] CHEN C, LI Y, HU J, et al. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production[J]. Metabolic Engineering, 2015, 29:66.
[27] VOGT M, HAAS S, KLAFFL S, et al. Pushing product formation to its limit:metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction[J]. Metabolic Engineering, 2014, 22(3):40.
[28] PATEK M, KRUMBACH K, EGGELING L, et al. Leucine synthesis in Corynebacterium glutamicum:enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis[J]. Applied and Environmental Microbiology, 1994, 60(1):133.
[29] BRUNE I, JOCHMANN N, BRINKROLF K, et al. The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum[J]. Journal of Bacteriology, 2007, 189(7):2720.
[30] MADSEN S M, BECK H C, RAVN P, et al. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme[J]. Applied and Environmental Microbiology, 2002, 68(8):4007-4014.
[31] FREIDING S, EHRMANN M A, VOGEL R F. Comparison of different IlvE aminotransferases in Lactobacillus sakei and investigation of their contribution to aroma formation from branched chain amino acids[J]. Food Microbiology, 2012, 29(2):205-214.
[32] LIU L, LI J, FANG J, et al. Process modeling and optimization of whole-cell biotransformation synthesis of α-ketoisocaproate by Bacillus cereus producing branched-chain amino acid aminotransferase with artificial neural network coupling genetic algorithm[J]. Journal of Bioscience and Bioengineering, 2009, 108:S127-S128.
[33] TAYLOR P P, PANTALEONE D P, SENKPEIL R F, et al. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases[J]. Trends in Biotechnology, 1998, 16(10):412.
[34] STUMPF P K, GREEN D E. L-Amino acid oxidase of Proteus vulgaris[J]. Journal of Biological Chemistry, 1944, 153(2):387-399.
[35] MOUSTAFA I M, FOSTER S, LYUBIMOV A Y, VRIELINK A. Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate:insights into structure and mechanism[J]. Journal of Molecular Biology, 2006, 364(5):991-1002.
[36] GEUEKE B, HUMMEL W. A new bacterial l-amino acid oxidase with a broad substrate specificity:purification and characterization[J]. Enzyme and Microbial Technology, 2002, 31(2):77-87.
[37] SUN M Z, GUO C, TIAN Y, et al. Biochemical, functional and structural characterization of Akbu-LAAO:a novel snake venom L-amino acid oxidase from Agkistrodon blomhoffii ussurensis[J]. Biochimie, 2010, 92(4):343-349.
[38] YANG H, JOHNSON P M, KO K C, et al. Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica[J]. Journal of Experimental Biology, 2005, 208(18):3609-3622.
[39] 祝玉洪, 刘龙, 周景文, 等. 不透明红球菌转化合成α-酮异己酸培养基优化[J]. 生物加工过程, 2011, 9(6):6-10. ZHU Yuhong, LIU Long, ZHOU Jingwen, et al. Medium optimization for biosynthesis of α-ketoisocaproate by Rhodococcus opacus DSM 43250[J]. Chinese Journal of Bioprocess Engineering, 2011, 9(6):6-10.
[40] 祝玉洪. 不透明红球菌生物合成α-酮异己酸的研究[D]. 无锡:江南大学, 2010. ZHU Yuhong. Study on α-ketoisocaproate biosynthesis by Rhodococcus opacus DSM 43250[D]. Wuxi:Jiangnan University, 2010.
[41] ROSINI E, MELIS R, MOLLA G, et al. Deracemization and stereoinversion of α-amino acids by L-amino acid deaminase[J]. Advanced Synthesis and Catalysis, 2017, 359:3373-3781.
[42] DUERRE J A, CHAKRABARTY S. L-amino acid oxidases of Proteus rettgeri[J]. Journal of Bacteriology, 1975, 121(2):656.
[43] BAEK J O, SEO J W, KWON O, et al. Expression and characterization of a second L-amino acid deaminase isolated from Proteus mirabilis in Escherichia coli[J]. Journal of Basic Microbiology, 2011, 51(2):129-135.
[44] TAKAHASHI E, ITO K, YOSHIMOTO T. Cloning of L-amino acid deaminase gene from Proteus vulgaris[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(12):2244.
[45] SONG Y, LI J, SHIN H D, et al. One-step biosynthesis of α-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris[J]. Scientific Reports, 2015, 5:12614.
[46] SONG Y, LI J, SHIN H D, et al. Tuning the transcription and translation of L-amino acid deaminase in Escherichia coli improves α-ketoisocaproate production from L-leucine[J]. PLoS One, 2017, 12(6):e0179229.
[47] HOU Y, HOSSAIN G S, LI J, et al. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids[J]. Biotechnology and Bioengineering, 2017, 114(9):1928-1936. |