化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2215-2226.DOI: 10.16085/j.issn.1000-6613.2020-1611
冯阳阳1,2(), 赵众从1,2, 杨文博3, 胡琳琪1,2, 张文达1,2, 佘跃惠1,2()
收稿日期:
2020-08-13
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
佘跃惠
作者简介:
冯阳阳(1996—),女,硕士研究生,主要研究微生物纳米催化稠油降黏。E-mail:基金资助:
FENG Yangyang1,2(), ZHAO Zhongcong1,2, YANG Wenbo3, HU Linqi1,2, ZHANG Wenda1,2, SHE Yuehui1,2()
Received:
2020-08-13
Online:
2021-04-05
Published:
2021-04-14
Contact:
SHE Yuehui
摘要:
纳米材料的传统制备包括化学、物理和机械方法,近年来,生物技术制备金属纳米颗粒因其经济和环保的优势引起了广泛的关注。本文首先阐述了微生物合成金属纳米颗粒的原理,总结了影响纳米颗粒生物合成的条件以及生物合成纳米颗粒及其在生物质中稳定分散的优势;然后讨论了使用污染物作为生物合成纳米颗粒前体,即当金属前体来自污染物和受污染的废水时,微生物合成纳米颗粒既降低了生产成本又处理了废液;并且探讨了纳米颗粒的应用对环境和人类健康的影响,强调在应用中应提前实地评估其环保可行性。最后,重点阐述了金属纳米颗粒在稠油催化降黏中的催化作用、纳米催化稠油降黏中的加氢反应和氧化反应;介绍了金属纳米颗粒辅助稠油原位开采的热采方法;展望了合成仿生复合纳米催化材料的应用前景。
中图分类号:
冯阳阳, 赵众从, 杨文博, 胡琳琪, 张文达, 佘跃惠. 微生物合成金属纳米颗粒及在稠油催化降黏中的应用研究进展[J]. 化工进展, 2021, 40(4): 2215-2226.
FENG Yangyang, ZHAO Zhongcong, YANG Wenbo, HU Linqi, ZHANG Wenda, SHE Yuehui. Microbial natural synthetic metal nanoparticles and the application in heavy oil catalytic viscosity reduction[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2215-2226.
细菌种类 | 细菌来源 | 合成金属 | 尺寸/nm | 形状 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
蜡状芽孢杆菌 | 藤黄叶 黄花菜 | 银 | 20~40 | 球形 | 抗菌 | [ |
嗜单胞菌GSG2 | 从孟加拉湾收集的珊瑚样本 | 银,金 | 金 10~50, 银 40~60 | 圆形,三角形, 六边形 | 抗菌 | [ |
马氏链霉菌 | 印度科钦水样沉积物样本 | 银 | 70 | 球形 | 抗菌 | [ |
粪产碱菌 | 马纳尔湾曼达帕姆附近帕克湾的珊瑚 | 银 | 30~50 | 球形 | 抗菌和抗生物膜的活性 | [ |
芽孢杆菌 CS11 | 印度科钦的土壤样品 | 银 | 42~92 | 球形 | 抗菌 | [ |
Kocuria flava | 印度的甘尼亚古马里海岸 | 铜 | 5~30 | 球形 | 抗菌 | [ |
放射球菌 | 美国马纳萨斯文化收藏馆 | 银 | 4~50 | 球形 | 抗菌、抗生物污垢剂和抗癌 | [ |
根瘤菌 | 海水 | 银 | 10 | 球形 | 抗菌 | [ |
铜绿假单胞菌 | 曼多维河口红树林水样 | 银 | 35~60 | 球形,三角形 | 抗菌 | [ |
希瓦氏菌PV-4 | 德国 | 钯,铂 | 2~7 | 球形 | 甲基橙染料的降解 | [ |
莫氏菌 | — | 银 | 2~5 | 球形 | 抗菌 | [ |
苍白杆菌属 MPV1 | 意大利托斯卡纳的砂 | 碲 | — | 大致球形,棒状 | 减少有毒化合物 | [ |
枯草芽孢杆菌 | 印度胡蒂金矿 | 金 | 20~25 | 球形 | 亚甲基蓝的降解 | [ |
短芽孢杆菌NCIM2533 | 印度浦那国家工业微生物保藏中心(NCL) | 银 | 41~68 | 球形 | 抗菌 | [ |
表1 用于产生纳米颗粒的细菌以及纳米颗粒的应用
细菌种类 | 细菌来源 | 合成金属 | 尺寸/nm | 形状 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
蜡状芽孢杆菌 | 藤黄叶 黄花菜 | 银 | 20~40 | 球形 | 抗菌 | [ |
嗜单胞菌GSG2 | 从孟加拉湾收集的珊瑚样本 | 银,金 | 金 10~50, 银 40~60 | 圆形,三角形, 六边形 | 抗菌 | [ |
马氏链霉菌 | 印度科钦水样沉积物样本 | 银 | 70 | 球形 | 抗菌 | [ |
粪产碱菌 | 马纳尔湾曼达帕姆附近帕克湾的珊瑚 | 银 | 30~50 | 球形 | 抗菌和抗生物膜的活性 | [ |
芽孢杆菌 CS11 | 印度科钦的土壤样品 | 银 | 42~92 | 球形 | 抗菌 | [ |
Kocuria flava | 印度的甘尼亚古马里海岸 | 铜 | 5~30 | 球形 | 抗菌 | [ |
放射球菌 | 美国马纳萨斯文化收藏馆 | 银 | 4~50 | 球形 | 抗菌、抗生物污垢剂和抗癌 | [ |
根瘤菌 | 海水 | 银 | 10 | 球形 | 抗菌 | [ |
铜绿假单胞菌 | 曼多维河口红树林水样 | 银 | 35~60 | 球形,三角形 | 抗菌 | [ |
希瓦氏菌PV-4 | 德国 | 钯,铂 | 2~7 | 球形 | 甲基橙染料的降解 | [ |
莫氏菌 | — | 银 | 2~5 | 球形 | 抗菌 | [ |
苍白杆菌属 MPV1 | 意大利托斯卡纳的砂 | 碲 | — | 大致球形,棒状 | 减少有毒化合物 | [ |
枯草芽孢杆菌 | 印度胡蒂金矿 | 金 | 20~25 | 球形 | 亚甲基蓝的降解 | [ |
短芽孢杆菌NCIM2533 | 印度浦那国家工业微生物保藏中心(NCL) | 银 | 41~68 | 球形 | 抗菌 | [ |
真菌种类 | 真菌来源 | 合成 金属 | 尺寸 /nm | 形状 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
绿青霉 | 印度昌迪加尔微生物类型文化收 | 银 | 10~50 | 大致球形 | 抗菌 | [ |
佛曲霉 | 印度西孟加拉邦耶尼废水中心 | 银 | 20~40 | 大致球形 | 抗真菌 | [ |
尖孢镰刀菌JT1 | 枯萎的香蕉 | 金 | 22 | — | 抗菌 | [ |
灰葡萄孢 | 智利四区收集的腐烂葡萄 | 金 | 1~100 | 三角形,球形,六角形,金字塔形,十面体 | 抗菌活性 | [ |
放射裂褶菌 | 印度安得拉邦森林 | 银 | 10~40 | 不规则形状 | 抗菌活性 | [ |
里氏木霉 | 印度昌迪加尔微生物类型文化收藏 | 金 | 61 | 三角形,杆形,球形,六边形 | 生物催化和抗菌 | [ |
弯孢菌 | 长春花的叶子 | 银 | 10~50 | 球形 | 协同抗菌 | [ |
尖孢梭菌AJP03 | 印度果阿Sonshi矿区的土壤 | 金 | 约72 | 球形 | 罗丹明B的降解 | [ |
尖孢镰刀菌405 | 美国华盛顿的研究服务局 | 银 | 10~50 | 球形 | 胶体稳定性 | [ |
米根霉 | 印度浦那国家工业微生物收集中心(NCIM) | 金 | 16~43 | 球形,花状 | 血液相容性 | [ |
哈茨木霉 | — | 银 | 20~30 | 球形 | 抗真菌 | [ |
尖孢镰刀菌 | 伊朗德黑兰国家基因工程与生物技术研究所(NIGEB) | 银 | 34~44 | 球形 | 抗菌 | [ |
平菇 | 埃及开罗大学生物技术中心 | 金 | 10~30 | 球形,棱柱形 | 抗癌和协同抗菌 | [ |
表2 用于产生纳米颗粒的真菌以及纳米的颗粒应用
真菌种类 | 真菌来源 | 合成 金属 | 尺寸 /nm | 形状 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
绿青霉 | 印度昌迪加尔微生物类型文化收 | 银 | 10~50 | 大致球形 | 抗菌 | [ |
佛曲霉 | 印度西孟加拉邦耶尼废水中心 | 银 | 20~40 | 大致球形 | 抗真菌 | [ |
尖孢镰刀菌JT1 | 枯萎的香蕉 | 金 | 22 | — | 抗菌 | [ |
灰葡萄孢 | 智利四区收集的腐烂葡萄 | 金 | 1~100 | 三角形,球形,六角形,金字塔形,十面体 | 抗菌活性 | [ |
放射裂褶菌 | 印度安得拉邦森林 | 银 | 10~40 | 不规则形状 | 抗菌活性 | [ |
里氏木霉 | 印度昌迪加尔微生物类型文化收藏 | 金 | 61 | 三角形,杆形,球形,六边形 | 生物催化和抗菌 | [ |
弯孢菌 | 长春花的叶子 | 银 | 10~50 | 球形 | 协同抗菌 | [ |
尖孢梭菌AJP03 | 印度果阿Sonshi矿区的土壤 | 金 | 约72 | 球形 | 罗丹明B的降解 | [ |
尖孢镰刀菌405 | 美国华盛顿的研究服务局 | 银 | 10~50 | 球形 | 胶体稳定性 | [ |
米根霉 | 印度浦那国家工业微生物收集中心(NCIM) | 金 | 16~43 | 球形,花状 | 血液相容性 | [ |
哈茨木霉 | — | 银 | 20~30 | 球形 | 抗真菌 | [ |
尖孢镰刀菌 | 伊朗德黑兰国家基因工程与生物技术研究所(NIGEB) | 银 | 34~44 | 球形 | 抗菌 | [ |
平菇 | 埃及开罗大学生物技术中心 | 金 | 10~30 | 球形,棱柱形 | 抗癌和协同抗菌 | [ |
藻类 | 藻类来源 | 合成金属 | 尺寸/nm | 形状 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
越南紫菜 | — | 银 | 13 | 球形 | 抗菌 | [ |
螺旋藻 | 伊朗克尔曼甜水区 | 银 | 35 | 球形 | 抗菌 | [ |
小球藻 | 印度钦奈藻类文化收藏馆 | 金 | 2~10 | 球形 | 抗病原 | [ |
小球藻 | 德州大学奥斯汀分校的藻类文化收藏 | 银 | 3~15 | 球形 | 抗菌 | [ |
小球藻 | 伊朗比尔詹德大学自然资源与环境学院 | 钯 | 5~20 | 球形 | — | [ |
海带 | 韩国当地的海藻产业 | 银 | 31 | 球形到椭圆形 | 植物毒性和幼苗生长测定 | [ |
表3 用于产生纳米颗粒的藻类以及纳米颗粒的应用
藻类 | 藻类来源 | 合成金属 | 尺寸/nm | 形状 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
越南紫菜 | — | 银 | 13 | 球形 | 抗菌 | [ |
螺旋藻 | 伊朗克尔曼甜水区 | 银 | 35 | 球形 | 抗菌 | [ |
小球藻 | 印度钦奈藻类文化收藏馆 | 金 | 2~10 | 球形 | 抗病原 | [ |
小球藻 | 德州大学奥斯汀分校的藻类文化收藏 | 银 | 3~15 | 球形 | 抗菌 | [ |
小球藻 | 伊朗比尔詹德大学自然资源与环境学院 | 钯 | 5~20 | 球形 | — | [ |
海带 | 韩国当地的海藻产业 | 银 | 31 | 球形到椭圆形 | 植物毒性和幼苗生长测定 | [ |
催化剂 | 油样 | 温度/℃ | 压力 | 时间 | 供氢体 | 降黏率 /% | 减硫 /% | 沥青质减少率 /% | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
纳米镍催化剂 | 辽河特稠油 | 280 | 6.4kPa | 24h | 98.3 | 15.3 | [ | ||
纳米镍催化剂 | 胜利三56-13-19稠油 | 200 | 90.4 | 73.4 | 34.9 | [ | |||
超分散镍纳米催化剂 | 阿萨巴斯卡VR和VGO | 370 | 110bar | 24h | H2 | 20.6 | 43.8 | [ | |
Ni NP | 阿萨巴斯卡沥青 | 240 | 12h | 十氢萘 | 81 | [ | |||
Fe2O3/SiO2 | 奥里诺科盆地超稠油 | 280~315 | 1600psi | 24h | 四氢萘 | 28.0 | 31.0 | [ | |
Ni-W-Mo亚微米催化剂 | 阿萨巴斯卡沥青 | 320~380 | 3.45MPa | 3~70h | 99.2 | 37.5 | [ | ||
超分散Ni-W-Mo NP | 阿萨巴斯卡沥青 | 340 | 3.5MPa | 48h | 42.8 | [ | |||
超分散Ni-W-Mo NP | 阿萨巴斯卡沥青 | 320~340 | 3.5MPa | 140h | H2 | 23.3 | 35.3 | [ | |
Fe-Ni/SiO2 | 胜利特稠油 | 150 | 48h | 77.2 | [ |
表4 不同水热裂解NP催化剂的催化性能
催化剂 | 油样 | 温度/℃ | 压力 | 时间 | 供氢体 | 降黏率 /% | 减硫 /% | 沥青质减少率 /% | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
纳米镍催化剂 | 辽河特稠油 | 280 | 6.4kPa | 24h | 98.3 | 15.3 | [ | ||
纳米镍催化剂 | 胜利三56-13-19稠油 | 200 | 90.4 | 73.4 | 34.9 | [ | |||
超分散镍纳米催化剂 | 阿萨巴斯卡VR和VGO | 370 | 110bar | 24h | H2 | 20.6 | 43.8 | [ | |
Ni NP | 阿萨巴斯卡沥青 | 240 | 12h | 十氢萘 | 81 | [ | |||
Fe2O3/SiO2 | 奥里诺科盆地超稠油 | 280~315 | 1600psi | 24h | 四氢萘 | 28.0 | 31.0 | [ | |
Ni-W-Mo亚微米催化剂 | 阿萨巴斯卡沥青 | 320~380 | 3.45MPa | 3~70h | 99.2 | 37.5 | [ | ||
超分散Ni-W-Mo NP | 阿萨巴斯卡沥青 | 340 | 3.5MPa | 48h | 42.8 | [ | |||
超分散Ni-W-Mo NP | 阿萨巴斯卡沥青 | 320~340 | 3.5MPa | 140h | H2 | 23.3 | 35.3 | [ | |
Fe-Ni/SiO2 | 胜利特稠油 | 150 | 48h | 77.2 | [ |
66 | JING R, KJELLERUP B V. Biogeochemical cycling of metals impacting by microbial mobilization and immobilization[J]. Journal of Environmental Sciences, 2018, 66: 146-154. |
67 | YONG P, MIKHEENKO I P, DEPLANCHE K, et al. Biorefining of precious metals from wastes: an answer to manufacturing of cheap nanocatalysts for fuel cells and power generation via an integrated biorefinery?[J]. Biotechnology Letters, 2010, 32(12): 1821-1828. |
68 | MACASKIE L E, MIKHEENKO I P, YONG P, et al. Today’s wastes, tomorrow’s materials for environmental protection[J]. Hydrometallurgy, 2010, 104(3/4): 483-487. |
69 | MABBETT A N, YONG P, FARR J P G, et al. Reduction of Cr(Ⅵ) by “palladized” biomass of Desulfovibrio desulfuricans ATCC 29577[J]. Biotechnology and Bioengineering, 2004, 87(1): 104-109. |
70 | NUZZO A, HOSSEINKHANI B, BOON N, et al. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community[J]. Environmental Pollution, 2017, 220: 1068-1078. |
71 | REITH F, ZAMMIT C M, SHAR S S, et al. Biological role in the transformation of platinum-group mineral grains[J]. Nature Geoscience, 2016, 9(4): 294-298. |
72 | 杨占村. 负载型铁基纳米零价金属催化剂的制备及对稠油降粘性能的研究[D]. 开封: 河南大学, 2014. |
YANG Zhancun. Preparation of supported nanoscale zero valence iron and its feasibility in viscosity reduction of heavy oil[D]. Kaifeng: Henan University, 2014. | |
73 | GUO K, LI H L, YU Z X. In-situ heavy and extra-heavy oil recovery: a review[J]. Fuel, 2016, 185: 886-902. |
74 | HASHEMI R, NASSAR N N, PEREIRA ALMAO P. In situ upgrading of athabasca bitumen using multimetallic ultradispersed nanocatalysts in an oil sands packed-bed column: Part 2. Solid analysis and gaseous product distribution[J]. Energy & Fuels, 2014, 28(2): 1351-1361. |
75 | MONTGOMERY W, SEPHTON M A, WATSON J S, et al. Minimising hydrogen sulphide generation during steam assisted production of heavy oil[J]. Scientific Reports, 2015, 5: 8159. |
76 | KHELKHAL M A, ESKIN A A, VAKHIN A V. Kinetic study on heavy oil oxidation by copper tallates[J]. Energy & Fuels, 2019, 33(12): 12690-12695. |
1 | MANDAL D, BOLANDER M E, MUKHOPADHYAY D, et al. The use of microorganisms for the formation of metal nanoparticles and their application[J]. Applied Microbiology and Biotechnology, 2006, 69(5): 485-492. |
2 | WONGRAT E, WONGKRAJANG S, CHUEJETTON A, et al. Rapid synthesis of Au, Ag and Cu nanoparticles by DC arc-discharge for efficiency enhancement in polymer solar cells[J]. Materials Research Innovations, 2019, 23(2): 66-72. |
3 | HÜBSCH C, DELLINGER P, MAIER H J, et al. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating[J]. Acta Biomaterialia, 2015, 11: 488-493. |
4 | WU G H, HUANG H, CHEN X M, et al. Facile synthesis of clean Pt nanoparticles supported on reduced graphene oxide composites: their growth mechanism and tuning of their methanol electro-catalytic oxidation property[J]. Electrochimica Acta, 2013, 111: 779-783. |
5 | OMRI A, BENZINA M, BENNOUR F. Industrial application of photocatalysts prepared by hydrothermal and sol-gel methods[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 356-362. |
77 | 周广健, 秦玉才, 李强, 等. 驱油剂对稠油注空气低温催化氧化过程的影响规律[J]. 石油化工高等学校学报, 2016, 29(4): 1-6. |
ZHOU Guangjian, QIN Yucai, LI Qiang, et al. Effect of oil displacement agent on process of low temperature catalytic oxidation of heavy oil[J]. Journal of Petrochemical Universities, 2016, 29(4): 1-6. | |
78 | SHOKRLU Y H, BABADAGLI T. Viscosity reduction of heavy oil/bitumen using micro- and nano-metal particles during aqueous and non-aqueous thermal applications[J]. Journal of Petroleum Science and Engineering, 2014, 119: 210-220. |
79 | FAROOQUI J, BABADAGLI T, LI H A. Improvement of the recovery factor using nano-metal particles at the late stages of cyclic steam stimulation[C]//SPE, Alberta, Canada, 2015. |
80 | REZAEI M, SCHAFFIE M, RANJBAR M. Thermocatalytic in situ combustion: influence of nanoparticles on crude oil pyrolysis and oxidation[J]. Fuel, 2013, 113: 516-521. |
81 | LI K W, HOU B C, WANG L, et al. Application of carbon nanocatalysts in upgrading heavy crude oil assisted with microwave heating[J]. Nano Letters, 2014, 14(6): 3002-3008. |
82 | LI W, ZHU J H, QI J H. Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 176-180. |
83 | WU C, SU J, ZHANG R, et al. The use of a nano-nickel catalyst for upgrading extra-heavy oil by an aquathermolysis treatment under steam injection conditions[J]. Petroleum Science and Technology, 2013, 31(21): 2211-2218. |
84 | ALKHALDI S, HUSEIN M M. Hydrocracking of heavy oil by means of in situ prepared ultradispersed nickel nanocatalyst[J]. Energy & Fuels, 2014, 28(1): 643-649. |
85 | HENDRANINGRAT L, SOURAKI Y, TORSŒTER O. Experimental investigation of decalin and metal nanoparticles-assisted bitumen upgrading during catalytic aquathermolysis[C]//SPE, Vienna, 2014. |
6 | PRASAD YADAV T, MANOHAR YADAV R, PRATAP SINGH D. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites[J]. Nanoscience and Nanotechnology, 2012, 2(3): 22-48. |
7 | SELVAKUMAR R, SEETHALAKSHMI N, THAVAMANI P, et al. Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications[J]. RSC Advances, 2014, 4(94): 52156-52169. |
86 | OVALLES C, RIVERO V, SALAZAR A. Downhole upgrading of Orinoco basin extra-heavy crude oil using hydrogen donors under steam injection conditions. Effect of the presence of iron nanocatalysts[J]. Catalysts, 2015, 5(1): 286-297. |
87 | GALARRAGA C E, PEREIRA-ALMAO P. Hydrocracking of athabasca bitumen using submicronic multimetallic catalysts at near in-reservoir conditions[J]. Energy & Fuels, 2010, 24(4): 2383-2389. |
88 | HASHEMI R, NASSAR N N, PEREIRA ALMAO P. Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: a study of hot fluid flooding for athabasca bitumen recovery[J]. Energy & Fuels, 2013, 27(4): 2194-2201. |
89 | LIU X L, YANG Z C, LI X H, et al. Preparation of silica-supported nanoFe/Ni alloy and its application in viscosity reduction of heavy oil[J]. Micro & Nano Letters, 2015, 10(3): 167-171. |
90 | 宋景杨, 何勇. 纳米级金属粒子对稠油或沥青降黏的研究[J]. 化工设计通讯, 2018, 44(1): 76. |
SONG Jingyang, HE Yong. Research on the viscosity of heavy oil or asphalt by nano-grade metal[J]. Chemical Engineering Design Communications, 2018, 44(1): 76. | |
91 | BROWN A R, HART A, COKER V S, et al. Upgrading of heavy oil by dispersed biogenic magnetite catalysts[J]. Fuel, 2016, 185: 442-448. |
92 | OMAJALI J B, HART A, WALKER M, et al. In-situ catalytic upgrading of heavy oil using dispersed bionanoparticles supported on gram-positive and gram-negative bacteria[J]. Applied Catalysis B: Environmental, 2017, 203: 807-819. |
93 | BERA A, BABADAGLI T. Effect of native and injected nano-particles on the efficiency of heavy oil recovery by radio frequency electromagnetic heating[J]. Journal of Petroleum Science and Engineering, 2017, 153: 244-256. |
8 | PATHAK J, RAJNEESH, AHMED H, et al. Recent developments in green synthesis of metal nanoparticles utilizing cyanobacterial cell factories[M]. Amsterdam: Elsevier, 2019: 237-265. |
9 | QUESTER K, AVALOS-BORJA M, CASTRO-LONGORIA E. Biosynthesis and microscopic study of metallic nanoparticles[J]. Micron, 2013, 54/55: 1-27. |
10 | AHMAD A, MUKHERJEE P, SENAPATI S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum[J]. Colloids and Surfaces B: Biointerfaces, 2003, 28(4): 313-318. |
11 | LUO K, JUNG S, PARK K H, et al. Microbial biosynthesis of silver nanoparticles in different culture media[J]. Journal of Agricultural and Food Chemistry, 2018, 66(4): 957-962. |
12 | CROOKES-GOODSON W J, SLOCIK J M, NAIK R R. Bio-directed synthesis and assembly of nanomaterials[J]. Chemical Society Reviews, 2008, 37(11): 2403-2412. |
13 | MIRHENDI M, EMTIAZI G, ROGHANIAN R. Production of nano zinc, zinc sulphide and nanocomplex of magnetite zinc oxide by Brevundimonas diminuta and Pseudomonas stutzeri[J]. IET Nanobiotechnology, 2013, 7(4): 135-139. |
14 | KITCHING M, RAMANI M, MARSILI E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up[J]. Microbial Biotechnology, 2015, 8(6): 904-917. |
15 | SHANTKRITI S, RANI P. Biological synthesis of copper nanoparticles using Pseudomonas fluorescens[J]. International Journal of Medical Microbiology, 2014, 3(9): 374-383. |
16 | HA C, ZHU N W, SHANG R, et al. Biorecovery of palladium as nanoparticles by Enterococcus faecalis and its catalysis for chromate reduction[J]. Chemical Engineering Journal, 2016, 288: 246-254. |
17 | DE CORTE S, HENNEBEL T, DE GUSSEME B, et al. Bio-palladium: from metal recovery to catalytic applications[J]. Microbial Biotechnology, 2012, 5(1): 5-17. |
18 | SCHLÜTER M, HENTZEL T, SUAREZ C, et al. Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins[J]. Chemosphere, 2014, 117: 462-470. |
19 | MISHRA A, KUMARI M, PANDEY S, et al. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp.[J]. Bioresource Technology, 2014, 166: 235-242. |
20 | TRIPATHI R M, BHADWAL A S, GUPTA R K, et al. ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 141: 288-295. |
21 | SUNKAR S, NACHIYAR C V. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus[J]. Asian Pacific Journal of Tropical Biomedicine, 2012, 2(12): 953-959. |
22 | MALHOTRA A, DOLMA K, KAUR N, et al. Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas[J]. Bioresource Technology, 2013, 142: 727-731. |
23 | MEHTA A, SIDHU C, PINNAKA A K, et al. Extracellular polysaccharide production by a novel osmotolerant marine strain of Alteromonas macleodii and its application towards biomineralization of silver[J]. PLoS One, 2014, 9(6): e98798. |
24 | DIVYA M, KIRAN G S, HASSAN S, et al. Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections[J]. Biocatalysis and Agricultural Biotechnology, 2019, 18: 101037. |
25 | DAS V L, THOMAS R, VARGHESE R T, et al. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area[J]. Biotech., 2014, 4(2): 121-126. |
26 | KAUR H, DOLMA K, KAUR N, et al. Marine microbe as nano-factories for copper biomineralization[J]. Biotechnology and Bioprocess Engineering, 2015, 20(1): 51-57. |
27 | KULKARNI R R, SHAIWALE N S, DEOBAGKAR D N, et al. Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity[J]. International Journal of Nanomedicine, 2015, 10: 963-974. |
28 | GAHLAWAT G, SHIKHA S, CHADDHA B S, et al. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera[J]. Microbial Cell Factories, 2016, 15(1): 1-14. |
29 | NAIK M M, PRABHU M S, SAMANT S N, et al. Synergistic action of silver nanoparticles synthesized from silver resistant estuarine pseudomonas aeruginosa strain SN5 with antibiotics against antibiotic resistant bacterial human pathogens[J]. Thalassas: an International Journal of Marine Sciences, 2017, 33(1): 73-80. |
30 | AHMED E, KALATHIL S, SHI L, et al. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities[J]. Journal of Saudi Chemical Society, 2018, 22(8): 919-929. |
31 | RAMANATHAN R, O’MULLANE A P, PARIKH R Y, et al. Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using morganella psychrotolerans[J]. Langmuir, 2011, 27(2): 714-719. |
32 | ZONARO E, PIACENZA E, PRESENTATO A, et al. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles[J]. Microbial Cell Factories, 2017, 16(1): 215. |
33 | SRINATH B S, NAMRATHA K, BYRAPPA K. Eco-friendly synthesis of gold nanoparticles by bacillus subtilis and their environmental applications[J]. Advanced Science Letters, 2018, 24(8): 5942-5946. |
34 | SARAVANAN M, BARIK S K, MUBARAKALI D, et al. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria[J]. Microbial Pathogenesis, 2018, 116: 221-226. |
35 | YADAV A, KON K, KRATOSOVA G, et al. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research[J]. Biotechnology Letters, 2015, 37(11): 2099-2120. |
36 | VETCHINKINA E, LOSHCHININA E, KUPRYASHINA M, et al. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes[J]. PeerJ, 2018, 6: e5237. |
37 | VÁGÓ A, SZAKACS G, SÁFRÁN G, et al. One-step green synthesis of gold nanoparticles by mesophilic Filamentous fungi[J]. Chemical Physics Letters, 2016, 645: 1-4. |
38 | ZHANG X L, YAN S, TYAGI R D, et al. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates[J]. Chemosphere, 2011, 82(4): 489-494. |
39 | GANACHARI S V, BHAT R, DESHPANDE R, et al. Extracellular biosynthesis of silver nanoparticles using fungi penicillium diversum and their antimicrobial activity studies[J]. BioNanoScience, 2012, 2(4): 316-321. |
40 | ROY S, MUKHERJEE T, CHAKRABORTY S, et al. Characterisation & antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876[J]. Nanomater. Biostruct., 2013, 8: 197-205. |
41 | THAKKER J N, DALWADI P, DHANDHUKIA P C. Biosynthesis of gold nanoparticles using Fusarium oxysporum f.sp. cubense JT1, a plant pathogenic fungus[J]. ISRN Biotechnology, 2013, 2013: 515091. |
42 | CASTRO M E, COTTET L, CASTILLO A. Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea[J]. Materials Letters, 2014, 115: 42-44. |
43 | METUKU R P, PABBA S, BURRA S, et al. Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: their characterization and antimicrobial activity[J]. Biotech., 2014, 4(3): 227-234. |
44 | RAMALINGMAM P, MUTHUKRISHNAN S, THANGARAJ P. Biosynthesis of silver nanoparticles using an Endophytic fungus, Curvularia lunata and its antimicrobial potential[J]. Journal of Nanoscience and Nanotechnology, 2015, 1: 241-247. |
45 | BHARGAVA A, JAIN N, KHAN M A, et al. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of Rhodamine B[J]. Journal of Environmental Management, 2016, 183: 22-32. |
46 | RAJPUT S, WEREZUK R, LANGE R M, et al. Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability[J]. Langmuir, 2016, 32(34): 8688-8697. |
47 | KITCHING M, CHOUDHARY P, INGUVA S, et al. Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles[J]. Enzyme and Microbial Technology, 2016, 95: 76-84. |
48 | GUILGER M, PASQUOTO-STIGLIANI T, BILESKY-JOSE N, et al. Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity[J]. Scientific Reports, 2017, 7: 44421. |
49 | HAMEDI S, GHASEMINEZHAD M, SHOKROLLAHZADEH S, et al. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(8): 1588-1596. |
50 | DOMANY E B, ESSAM T M, AHMED A E, et al. Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus[J]. Journal of Applied Pharmaceutical Science, 2018, 8: 119-128. |
51 | HILDEBRAND M, LERCH S J L. Diatom silica biomineralization: parallel development of approaches and understanding[J]. Seminars in Cell & Developmental Biology, 2015, 46: 27-35. |
52 | JEFFRYES C, AGATHOS S N, RORRER G. Biogenic nanomaterials from photosynthetic microorganisms[J]. Current Opinion in Biotechnology, 2015, 33: 23-31. |
53 | VENKATPURWAR V, POKHARKAR V. Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity[J]. Materials Letters, 2011, 65(6): 999-1002. |
54 | SALARI Z, DANAFAR F, DABAGHI S, et al. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity[J]. Journal of Saudi Chemical Society, 2016, 20(4): 459-464. |
55 | SIDDIQI K S, HUSEN A. Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects[J]. Nanoscale Research Letters, 2016, 11(1): 363. |
56 | ERCI F, CAKIR-KOC R, ISILDAK I. Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity[J]. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46(S1): 150-158. |
57 | LENGKE M F, FLEET M E, SOUTHAM G. Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium() chloride complex[J]. Langmuir, 2007, 23(17): 8982-8987. |
58 | SHINDE S K, GHODAKE G S, DUBAL D P, et al. Electrochemical synthesis: monoclinic Cu2Se nano-dendrites with high performance for supercapacitors[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 271-279. |
59 | KHANDEL P, SHAHI S K. Microbes mediated synthesis of metal nanoparticles: current status and future prospects[J]. Int. J. Nanomater. Biostruct., 2015, 6(1): 1-24. |
60 | QIAO B T, LIANG J X, WANG A Q, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction(CMSI)[J]. Nano Research, 2015, 8(9): 2913-2924. |
61 | LIU H Y, ZHANG H, WANG J, et al. Effect of temperature on the size of biosynthesized silver nanoparticle: deep insight into microscopic kinetics analysis[J]. Arabian Journal of Chemistry, 2020, 13(1): 1011-1019. |
62 | DWIVEDI A D, GOPAL K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369 (1/2/3): 27-33. |
63 | KUMAR B, SMITA K, CUMBAL L, et al. One pot synthesis and characterization of gold nanocatalyst using Sacha inchi(Plukenetia volubilis) oil: green approach[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 158: 55-60. |
64 | YUAN C G, HUO C, YU S X, et al. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85: 19-26. |
65 | KONVIČKOVÁ Z, HOLIŠOVÁ V, KOLENČÍK M, et al. Phytosynthesis of colloidal Ag-AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties[J]. Colloid and Polymer Science, 2018, 296(4): 677-687. |
[1] | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
[2] | 杨坤, 卢晓雪, 杨林松, 赵庆欢, 朱劼. 毕赤酵母分泌表达植物病毒蛋白制备自组装纳米催化剂提高催化性能[J]. 化工进展, 2021, 40(1): 354-365. |
[3] | 孙倩, 曾晓飞, 王丹, 王洁欣, 陈建峰. “超重力+”法可控制备透明纳米分散体及应用[J]. 化工进展, 2020, 39(12): 4779-4797. |
[4] | 薛松林, 晏青, 杜艳, 姜红, 陈日志. MNPs@ZIFs催化剂的研究进展[J]. 化工进展, 2015, 34(09): 3303-3310,3344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |