1 | 张万忠, 乔学亮, 陈建国, 等. 纳米材料的表面修饰与应用[J]. 化工进展, 2004, 23(10): 35-39. | 1 | ZHANG Wanzhong, QIAO Xueliang, CHEN Jianguo, et al. Applications of surface modification in preparing nanoparticles[J]. Chemical Industry and Engineering Progress, 2004, 23(10): 35-39. | 2 | MACKAY M, TUTEJA A, DUXBURY P, et al. General strategies for nanoparticle dispersion[J]. Science, 2006, 311: 1740-1743. | 3 | BALAZS A C, EMRICK T, RUSSELL T P. Nanoparticle polymer composites: where two small worlds meet[J]. Science, 2006, 314: 1107-1110. | 4 | WANG Xun, ZHUANG Jing, PENG Qing, et al. A general strategy for nanocrystal synthesis[J]. Nature, 2005, 437: 121-124. | 5 | PARK Jongnam, AN Kwangjin, HWANG Yosun, et al. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nature Materials, 2004, 3: 891-895. | 6 | PANG Xinchang, ZHAO Lei, HAN Wei, et al. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals[J]. Nature Nanotechnology, 2013, 8: 426-431. | 7 | SUN Shouheng, MURRAY C B, WELLER D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287: 1989-1992. | 8 | ZHU Wenlei, MICHALSKY R, ? METIN, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society, 2013, 135: 16833-16836. | 9 | 曾晓飞, 王琦安, 王洁欣, 等. 纳米颗粒透明分散体及其高性能有机无机复合材料[J]. 中国科学: 化学, 2013, 43(6): 629-640. | 9 | ZENG Xiaofei, WANG Qi’an, WANG Jiexin, et al. Transparent dispersion of nanoparticles and applications to fabricate advanced organic-inorganic composites[J]. Scientia Sinica Chimica, 2013, 43(6): 629-640. | 10 | HORN D, RIEGER J. Organic nanoparticles in the aqueous phase-theory, experiment, and use[J]. Angewandte Chemie: International Edition, 2001, 40: 4330-4361. | 11 | 陈建峰, 郭锴, 郭奋, 等. 超重力技术及应用——新一代反应与分离技术[M]. 北京: 化学工业出版社, 2003. | 11 | CHEN Jianfeng, GUO Kai, GUO Fen, et al. High gravity technology and application—New generation of reaction and separation technology[M]. Beijing: Chemical Industry Press, 2003. | 12 | ZHAO Hong, SHAO Lei, CHEN Jianfeng. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156: 588-593. | 13 | YANG Haijian, CHU Guangwen, ZHANG Jianwen, et al. Micromixing efficiency in a rotating packed bed: experiments and simulation[J]. Industrial & Engineering Chemistry Research, 2005, 44: 7730-7737. | 14 | WU Wei, LUO Lailong, CHU Guangwen, et al. A novel route to prepare nanocomposites in larger scale[J]. Journal of Materials Science & Technology, 2007, 23: 407-411. | 15 | PU Yuan, KANG Fang, ZENG Xiaofei, et al. Synthesis of transparent oil dispersion of monodispersed calcium carbonate nanoparticles with high concentration[J]. AIChE Journal, 2017, 63: 3663-3669. | 16 | KANG Fang, WANG Dan, PU Yuan, et al. Efficient preparation of monodispersed CaCO3 nanoparticles as overbased oil detergents in a rotating packed bed reactor[J]. Powder Technology, 2018, 325: 405-411. | 17 | SUN Qian, CHEN Bo, WU Xi, et al. Preparation of transparent suspension of lamellar magnesium hydroxide nanocrystals using a high-gravity reactive precipitation combined with surface modification[J]. Industrial & Engineering Chemistry Research, 2015, 54: 666-671. | 18 | WANG Jiexin, SUN Qian, CHEN Bo, et al. Transparent ‘solution’ of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films[J]. Nanotechnology, 2015, 26: 195602. | 19 | WANG Miao, ZENG Xiaofei, CHEN Jingyi, et al. Magnesium hydroxide nanodispersion for polypropylene nanocomposites with high transparency and excellent fire-retardant properties[J]. Polymer Degradation and Stability, 2017, 146: 327-333. | 20 | WANG Miao, HAN Xingwei, LIU Long, et al. Transparent aqueous Mg(OH)2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property[J]. Industrial & Engineering Chemistry Research, 2015, 54: 12805-12812. | 21 | 王淼. 氢氧化镁透明分散体及其聚合物基阻燃材料的制备和性能研究[D]. 北京: 北京化工大学, 2016. | 21 | WANG Miao. Study on the preparation and propertises of transparent magnesium hydroxide nanodispersion and its nanocomposites[D]. Beijing: Beijing University of Chemical Technology, 2016. | 22 | HAN Xingwei, ZENG Xiaofei, ZHANG Jie, et al. Synthesis of transparent dispersion of monodispersed silver nanoparticles with excellent conductive performance using high-gravity technology[J]. Chemical Engineering Journal, 2016, 296: 182-190. | 23 | BAO Jun, WANG Jiexin, ZENG Xiaofei, et al. Large-scale synthesis of uniform silver nanowires by high-gravity technology for flexible transparent conductive electrode[J]. Industrial & Engineering Chemistry Research, 2019, 58: 20630-20638. | 24 | DU Jintao, SHI Jie, SUN Qian, et al. High-gravity-assisted preparation of aqueous dispersions of monodisperse palladium nanocrystals as pseudohomogeneous catalyst for highly efficient nitrobenzene reduction[J]. Chemical Engineering Journal, 2020, 382: 122883. | 25 | HE Xianglei, WANG Zhi, PU Yuan, et al. High-gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency[J]. Chemical Engineering Science, 2019, 195: 1-10. | 26 | XIA Yi, SHI Jie, SUN Qian, et al. Controllable synthesis and evolution mechanism of monodispersed sub-10nm ZrO2 nanocrystals[J]. Chemical Engineering Journal, 2020, 394: 124843. | 27 | HUANG Xiejun, ZENG Xiaofei, WANG Jiexin, et al. Transparent dispersions of monodispersed ZnO nanoparticles with ultrahigh content and stability for polymer nanocomposite film with excellent optical properties[J]. Industrial & Engineering Chemistry Research, 2018, 57: 4253-4260. | 28 | YANG Danlei, XIAO Jia, WANG Dan, et al. Controllable preparation of monodisperse silica nanoparticles using internal circulation rotating packed bed for dental restorative composite resin[J]. Industrial & Engineering Chemistry Research, 2018, 57: 12809-12815. | 29 | GUANG Mei, XIA Yi, WANG Dan, et al. Controllable synthesis of transparent dispersion of monodisperse anatase-TiO2 nanocrystals[J]. Materials Chemistry and Physics, 2019, 224: 100-106. | 30 | CHEN Bo, SUN Qian, WANG Dan, et al. High-gravity-assisted synthesis of surfactant-free transparent dispersions of monodispersed MgAl-LDH nanoparticles[J]. Industrial & Engineering Chemistry Research, 2020, 59: 2960-2967. | 31 | CHEN Bo, WANG Jiexin, WANG Dan, et al. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles[J]. Nanotechnology, 2018, 29: 305605. | 32 | LENG Jingning, CHEN Jingyi, WANG Dan, et al. Scalable preparation of Gd2O3: Yb3+/Er3+ upconversion nanophosphors in a high-gravity rotating packed bed reactor for transparent upconversion luminescent films[J]. Industrial & Engineering Chemistry Research, 2017, 56: 7977-7983. | 33 | PU Yuan, LENG Jingning, WANG Dan, et al. Process intensification for scalable synthesis of ytterbium and erbium co-doped sodium yttrium fluoride upconversion nanodispersions[J]. Powder Technology, 2018, 340: 208-216. | 34 | JIAO Yiran, PU Yuan, WANG Jiexin, et al. Process intensified synthesis of rare-earth doped β-NaYF4 nanorods toward gram-scale production[J]. Industrial & Engineering Chemistry Research, 2019, 58(49): 22306-22314. | 35 | YIN Xiong, SUN Qian, WANG Dan, et al. High-gravity-assisted synthesis of aqueous nanodispersions of organic fluorescent dyes for counterfeit labeling[J]. AIChE Journal, 2019, 65: e16714. | 36 | LIU Yaping, WU Kai, WANG Jiexin, et al. Continuous production of antioxidant liposome for synergistic cancer treatment using high-gravity rotating packed bed[J]. Chemical Engineering Journal, 2018, 334: 1766-1774. | 37 | WANG Jiexin, ZHANF Zhibing, LE Yuan, et al. A novel strategy to produce highly stable and transparent aqueous ‘nanosolutions’ of water-insoluble drug molecules[J]. Nanotechnology, 2011, 22: 305101. | 38 | ZHANG Zhibing, LE Yuan, WANG Jiexin, et al. Development of stabilized itraconazole nanodispersions by using high-gravity technique[J]. Drug Development and Industrial Pharmacy, 2012, 38: 1512-1520. | 39 | XIA Yi, ZHANG Cong, WANG Jiexin, et al. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film[J]. Langmuir, 2018, 34: 6806-6813. | 40 | HE Xianglei, WANG Zhi, WANG Dan, et al. Sub-kilogram-scale synthesis of highly dispersible zirconia nanoparticles for hybrid optical resins[J]. Applied Surface Science, 2019, 491: 505-516. | 41 | HE Xianglei, TANG Ruijie, PU Yuan, et al. High-gravity-hydrolysis approach to transparent nanozirconia/silicone encapsulation materials of light emitting diodes devices for healthy lighting[J]. Nano Energy, 2019, 62: 1-10. | 42 | HUANG Xiejun, ZENG Xiaofei, WANG Jiexin, et al. Synthesis of monodispersed ZnO@SiO2 nanoparticles for anti-UV aging application in highly transparent polymer-based nanocomposites[J]. Journal of Materials Science, 2019, 54: 8581-8590. | 43 | HUANG Xiejun, BAO Jun, HAN Yue, et al. Controllable synthesis and evolution mechanism of tungsten bronze nanocrystals with excellent optical performance for energy-saving glasses[J]. Journal of Materials Chemistry C, 2018, 6: 7783-7789. | 44 | HAN Xingwei, ZENG Xiaofei, WANG Jiexin, et al. Transparent flexible ZnO/MWCNTs/pbma ternary nanocomposite film with enhanced mechanical properties[J]. Science China: Chemistry, 2016, 59: 1010-1017. | 45 | DU Jintao, SUN Qian, ZENG Xiaofei, et al. ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate[J]. Chemical Engineering Science, 2020, 220: 115642. | 46 | XIA Yi, SUN Qian, WANG Dan, et al. Surfactant-free aqueous dispersions of shape- and size-controlled zirconia colloidal nanocrystal clusters with enhanced photocatalytic activity[J]. Langmuir, 2019, 35: 11755-11763. | 47 | YANG Danlei, SUN Qian, DUAN Yonghong, et al. Efficient construction of SiO2 colloidal nanoparticle clusters as novel fillers by a spray-drying process for dental composites[J]. Industrial & Engineering Chemistry Research, 2019, 58: 18178-18186. | 48 | YANG Danlei, SUN Qian, NIU Hao, et al. The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: Effects of heat treatment and filler composition[J]. Composites Part B: Engineering, 2020, 186: 107791. | 49 | WANG Dan, ZHU Lin, PU Yuan, et al. Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging[J]. Nanoscale, 2017, 9: 11214-11221. | 50 | XU Ke, WANG Jiexin, KANG Xuliang, et al. Fabrication of antibacterial monodispersed Ag-SiO2 core-shell nanoparticles with high concentration[J]. Materials Letters, 2009, 63: 31-33. | 51 | ZHANG Xinsheng, WANG Jiexin, XU Ke, et al. Monodisperse Ag@SiO2 core-shell nanoparticles as active inhibitors for marine anticorrosion applications[J]. Journal of Nanoscience and Nanotechnology, 2011, 11: 3481-3487. | 52 | WU Kai, ZHANG Shuang, LIN Suxuan, et al. Long-term antibacterial coatings with core-shell Ag@SiO2 colloid[J]. Journal of Nanoscience and Nanotechnology, 2018, 18: 7767-7774. |
|