1 | CAI Wenju, LI Ke, LIAO Hong, et al. Weather conditions conducive to Beijing severe haze more frequent under climate change[J]. Nature Climate Change, 2017, 7: 257-262. |
2 | ZHENG Chunmiao, LIU Jie. China’s “Love Canal” moment?[J]. Science, 2013, 340(6134): 810. |
3 | JAMBECK Jenna R, GEYER Roland, WILCOX Chris, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. |
4 | CHU Steven, MAJUMDAR Arun. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
5 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
6 | FINCH J M. Dust collector: US325521[P]. 1885-09-01. |
7 | BRETNEY E. Water purifier: US453105[P]. 1981-05-26. |
8 | WANG Hualin, ZHANG Yanhong, WANG Jiangang, et al. Cyclonic separation technology: researches and developments[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 212-219. |
9 | So much more to know … [J]. Science, 2005, 309(5731): 78-102. |
10 | 陆夕云, 林建忠. 能否发展关于湍流动力学和颗粒材料运动学的综合理论?[J].科学通报, 2017, 62(11): 1115-1118. |
10 | LU Xiyun, LIN Jianzhong. Can we develop a general theory of the dynamics of turbulent flows and the motion of granular materials?[J]. Chinese Science Bulletin, 2017, 62(11): 1115-1118. |
11 | HOU R, HUNT A, WILLIAMS R A. Acoustic monitoring of hydrocyclones[J]. Powder Technology, 2002, 124(3): 176-187. |
12 | NEESSE T, SCHNEIDER M, GOLYK V, et al. Measuring the operating state of the hydrocyclone[J]. Minerals Engineering, 2004, 17(5): 697-703. |
13 | DYAKOWSKI Tomasz, JEANMEURE Laurent F C, JAWORSKI Artur J. Applications of electrical tomography for gas-solids and liquid-solids flows—A review[J]. Powder Technology, 2000, 112(3): 174-192. |
14 | BENNETT M A, WILLIAMS R A. Monitoring the operation of an oil/water separator using impedance tomography[J]. Minerals Engineering, 2004, 17(5): 605-614. |
15 | KAWATRA S K, BAKSHI A K, EISELE T C. An on-line pressure vessel rheometer for slurries[J]. Powder Technology, 1999, 105(1/2/3): 418-423. |
16 | 王剑刚. 三维旋转湍流场激光测速研究[D]. 上海: 华东理工大学, 2016. |
16 | WANG Jiangang. Three-dimentional measurement of turbulent hydrocyclone flow field with optical methods[D]. Shanghai: East China University of Science and Technology, 2016. |
17 | CUI Shuo, HE Zhongzhou, ZHU Ziwei, et al. Microfluidic analysis of PM2.5-induced epithelial-mesenchymal transition in human bronchial epithelial 16HBE cells[J]. Microfluidics and Nanofluidics, 2015, 19: 263-272. |
18 | WANG Bingjie, PRINSEN Pepijn, WANG Huizhi, et al. Macroporous materials: microfluidic fabrication, functionalization and applications[J]. Chemical Society Reviews, 2017, 46(3): 855-914. |
19 | BASAVARAJU K C, SHARMA S, SINGH A K, et al. Chitosan-microreactor: a versatile approach for heterogeneous organic synthesis in microfluidics[J]. ChemSusChem, 2014, 7(7): 1864-1869. |
20 | SONG Young Seok. A passive microfluidic valve fabricated from a hydrogel filled with carbon nanotubes[J]. Carbon, 2012, 50(3): 1417-1421. |
21 | GAO Yandong, MAJUMDAR Devi, JOVANOVIC Bojana, et al. A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology[J]. Biomedical Microdevices, 2011, 13(3): 539-548. |
22 | Sam H AU, Dean CHAMBERLAIN M, MAHESH Shruthi, et al. Hepatic organoids for microfluidic drug screening[J]. Lab on a Chip, 2014, 14(17): 3290-3299. |
23 | QIU Yang, WANG Fei, LIU Yingmei, et al. Microfluidic-based fabrication, characterization and magnetic functionalization of microparticles with novel internal anisotropic structure[J]. Scientific Reports, 2015, 5(1): 13060. |
24 | 黄渊. 旋流场中颗粒高速自转研究及应用[D]. 上海: 华东理工大学, 2017. |
24 | HUANG Yuan. Detection and application of particle rotation with spiral trajectory in hydrocyclone[D]. Shanghai: East China University of Science and Technology, 2017. |
25 | HUANG Yuan, LI Jianping, ZHANG Yanhong, et al. High-speed particle rotation for coating oil removal by hydrocyclone[J]. Separation and Purification Technology, 2017, 177: 263-271. |
26 | HUANG Yuan, WANG Hualin, CHEN Yuquan, et al. Liquid-liquid extraction intensification by micro-droplet rotation in a hydrocyclone[J]. Scientific Reports, 2017, 7(1): 2678. |
27 | WANG Hualin, FU Pengbo, LI Jianping, et al. Separation-and-recovery technology for organic waste liquid with a high concentration of inorganic particles[J]. Engineering, 2018, 4(3): 406-415. |
28 | AVCI Atakan, KARAGOZ Irfan. Effects of flow and geometrical parameters on the collection efficiency in cyclone separators[J]. Journal of Aerosol Science, 2003, 34(7): 937-955. |
29 | HSIAO Ta-Chih, HUANG Sheng-Hsiu, Chia-Wei HSU, et al. Effects of the geometric configuration on cyclone performance[J]. Journal of Aerosol Science, 2015, 86: 1-12. |
30 | ZHAO Bingtao. Experimental investigation of flow patterns in cyclones with conventional and symmetrical inlet geometries[J]. Chemical Engineering & Technology, 2005, 28(9): 969-972. |
31 | ELSAYED Khairy. Design of a novel gas cyclone vortex finder using the adjoint method[J]. Separation and Purification Technology, 2015, 142: 274-286. |
32 | QIAN Fuping, ZHANG Jigang, ZHANG Mingyao. Effects of the prolonged vertical tube on the separation performance of a cyclone[J]. Journal of Hazardous Materials, 2006, 136(3): 822-829. |
33 | ELSAYED Khairy, LACOR Chris. The effect of the dust outlet geometry on the performance and hydrodynamics of gas cyclones[J]. Computers & Fluids, 2012, 68: 134-147. |
34 | GIMBUN Jolius, CHUAH T G, FAKHRU’L-RAZI A, et al. The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(1): 7-12. |
35 | VIEIRA Luiz G M, SILVA Jr Carlos A, DAMASCENO Joao J R, et al. A study of the fluid dynamic behaviour of filtering hydrocyclones[J]. Separation and Purification Technology, 2007, 58(2): 282-287. |
36 | VIEIRA Luiz G M, DAMASCENO Joao J R, BARROZO Marcos A S. Improvement of hydrocyclone separation performance by incorporating a conical filtering wall[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 460-467. |
37 | TAVARES L M, SOUZA L L G, LIMA J R B, et al. Modeling classification in small-diameter hydrocyclones under variable rheological conditions[J]. Minerals Engineering, 2002, 15(8): 613-622. |
38 | CHU Liangyin, CHEN Wenmei, Xiaozhong LEE. Enhancement of hydrocyclone performance by controlling the inside turbulence structure[J]. Chemical Engineering Science, 2002, 57(1): 207-212. |
39 | 白志山. 气泡强化废水旋流脱油机理及其工程应用的研究[D]. 上海:华东理工大学, 2009. |
39 | BAI Zhishan. Principle of wastewater deoiling using hydrocyclone enhanced by air bubbles and its engineering applications[D]. Shanghai: East China University of Science and Technology, 2009. |
40 | BAI Zhishan, WANG Hualin, TU Shantung. Oil-water separation using hydrocyclones enhanced by air bubbles[J]. Chemical Engineering Research and Design, 2011, 89: 55-59. |
41 | FU Pengbo, WANG Fei, YANG Xuejing, et al. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation[J]. Environmental Science & Technology, 2017, 51: 1587-1594. |
42 | FU Pengbo, JIANG Xia, MA Liang, et al. Enhancement of PM2.5 cyclone separation by droplet capture and particle sorting[J]. Environmental Science & Technology, 2018, 52: 11652-11659. |
43 | FU Pengbo, WANG Hualin, LI Jianping, et al. Cyclonic gas stripping deoiling and gas flow acceleration classification for the resource utilization of spent catalysts in residue hydrotreating process[J]. Journal of Cleaner Production, 2018, 190: 689-702. |
44 | LI Jianping, YANG Xuejin, MA Liang, et al. The enhancement on the waste management of spent hydrotreating catalysts for residue oil by a hydrothermal-hydrocyclone process[J]. Catalysis Today, 2016, 271: 163-171. |
45 | 李剑平. 水热旋流脱附技术及在含油多孔介质脱油中的应用研究[D]. 上海:华东理工大学, 2013. |
45 | LI Jianping. Hot water cyclonic extraction technology and its application in removing oil from porous medium[D]. Shanghai: East China University of Science and Technology, 2013. |
46 | SHI Dai, HUANG Yuan, WANG Hualin, et al. Deoiling of oil-coated catalyst using high-speed suspending self-rotation in cyclone[J]. Separation and Purification Technology, 2019, 210: 117-124. |
47 | 时代. 气固旋流场中颗粒悬浮态自转研究及应用[D]. 上海: 华东理工大学, 2018. |
47 | SHI Dai. Research and application of particle self-rotation with suspending state[D]. Shanghai: East China University of Science and Technology, 2018. |
48 | XU Yinxiang, FANG Yuanyuan, WANG Zhenghua, et al. In-situ sludge reduction and carbon reuse in an anoxic/oxic process coupled with hydrocyclone breakage[J]. Water Research, 2018, 141: 135-144. |
49 | 吕文杰. 污泥化学调理及旋流脱水研究[D]. 上海: 华东理工大学, 2016. |
49 | Wenjie LYU. Principle and applications study on enhanced separation of mini-hydrocyclone by particulate arrangement[D]. Shanghai: East China University of Science and Technology, 2016. |
50 | 刘毅. AOH中碳源释放利用机制及应用[D]. 上海: 华东理工大学, 2017. |
50 | LIU Yi. Experimental investigation on sludge disruption for organics release in AOH process using a hydrocyclone and its industrial application[D]. Shanghai: East China University of Science and Technology, 2017. |
51 | 钱鹏. 旋流选择性吸收硫化氢的机理研究[D] . 上海: 华东理工大学, 2016. |
51 | QIAN Peng. The mechanism research on the selective absorption of hydrogen sulfide in cyclone[D]. Shanghai: East China University of Science and Technology, 2016. |