[1] KUMAR V, ASHOK S, PARK S. Recent advances in biological production of 3-hydroxypropionic acid[J]. Biotechnology Advances, 2013, 31(6):945-961.
[2] BOZELL J J, PETERSEN G R. ChemInform abstract:technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "top 10" revisited[J]. Green Chem., 2010, 12(4):539-554.
[3] 温丽瑗,陈成刚,张战军,等. 3-羟基丙酸的绿色合成法[J]. 工业催化, 2016, 24(8):7-11. WEN L Y, CHEN C G, ZHANG Z J, et al. Progress in green approaches to synthesizing 3-hydroxypropionic acid[J]. Industrial Catalysis, 2016, 24(8):7-11.
[4] VALDEHUESA K N, LIU H, NISOLA G M, et al. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical[J]. Applied Microbiology and Biotechnology, 2013, 97(8):3309-3321.
[5] 张鸿达,刘成,高卫华,等. 微生物法生产3-羟基丙酸的研究进展[J]. 化工进展, 2007, 26(1):33-36. ZHANG H D, LIU C, GAO W H, et al. Progress of producing 3-HP by microbial fermentation[J]. Chemical Industry and Engineering Progress, 2007, 26(1):33-36.
[6] 牛坤,秦海彬,柳志强,等. 甘油发酵生产3-羟基丙酸的代谢改造工程菌研究进展[J]. 食品与发酵工业, 2015, 41(6):234-240. NIU K, QIN H B, LIU Z Q, et al. Research progress on 3-hydroxypropionic acid production from glycerol by metabolically engineered strains[J]. Food and Fermentation Industries, 2015, 41(6):234-240.
[7] LIU C S, DING Y, ZHANG R, et al. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis[J]. Metabolic Engineering, 2016, 34:104-111.
[8] CHENG Z, JIANG J, WU H, et al. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli[J]. Bioresource Technology, 2016, 200:897-904.
[9] KILDEGAARD K R, JENSEN N B, SCHNEIDER K, et al. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway[J]. Microbial Cell Factories, 2016, 15(1):53-65.
[10] LIAN H, ZELDES B M, LIPSCOMB G L, et al. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus[J]. Biotechnology and Bioengineering, 2016,113(12):2652-2660.
[11] WANG Y, SUN T, GAO X, et al. Biosynthesis of platform chemical 3-hydroxypropionic acid(3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803[J]. Metabolic Engineering, 2016, 34:60-70.
[12] CHU H S, KIM Y S, LEE C M, et al. Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli[J]. Biotechnology and Bioengineering, 2015, 112(2):356-364.
[13] ZHAO L, LIN J, WANG H, et al. Development of a two-step process for production of 3-hydroxypropionic acid from glycerol using Klebsiella pneumoniae and Gluconobacter oxydans[J]. Bioprocess and Biosystems Engineering, 2015, 38(12):2487-2495.
[14] LI Y, WANG X, GE X, et al. High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism[J]. Scientific Reports, 2016, 6:26932.
[15] ZHOU S, CATHERINE C, RATHNASINGH C, et al. Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans[J]. Biotechnology and Bioengineering, 2013, 110(12):3177-3187.
[16] CHEN Z, HUANG J, WU Y, et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose[J]. Metabolic Engineering, 2017, 39:151-158.
[17] KALANTARI A, CHEN T, JI B, et al. Conversion of glycerol to 3-hydroxypropanoic acid by genetically engineered Bacillus subtilis[J]. Frontiers in Microbiology, 2017, 8:638.
[18] HONJO H, TSURUNO K, TATSUKE T, et al. Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli[J]. Journal of Bioscience and Bioengineering, 2015, 120(2):199-204.
[19] LUO L H, SEO J W, BAEK J O, et al. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol[J]. Applied Microbiology and Biotechnology, 2011, 89(3):697-703.
[20] BORODINA I, KILDEGAARD K R, JENSEN N B, et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine[J]. Metabolic Engineering, 2015, 27:57-64.
[21] LEE S H, PARK S J, PARK O J, et al. Production of 3-hyroxypropionic acid from acrylic acid by newly isolated Rhodococcus erythropolis LG12[J]. J. Microbial. Biotechnol., 2009, 19(5):474-481.
[22] YU S, YAO P, LI J, et al. Enzymatic synthesis of 3-hydroxypropionic acid at high productivity by using free or immobilized cells of recombinant Escherichia coli[J]. Journal of Molecular Catalysis B:Enzymatic, 2016, 129:37-42.
[23] DANIEL R, BOBIK T A, GOTTSCHALK G. Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes[J]. FEMS Microbiology Reviews, 1998, 22(5):553-566.
[24] RAYNAUD C, SARCABAL P, MEYNIAL-SALLES I, et al. Molecular characterization of the 1,3-propanediol(1,3-PD) operon of Clostridium butyricum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9):5010-5015.
[25] BOBIK T A, HAVEMANN G D, BUSCH R J, et al. The propanediol utilization(pdu) operon of Salmonella enterica Serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation[J]. Journal of Bacteriology, 1999, 181(19):5967-5975.
[26] LEAL N A, HAVEMANN G D, BOBIK T A. PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2[J]. Archives of Microbiology, 2003, 180(5):353-361.
[27] YASUDA S M, MASAHARU, HORIKAWA H T, et al. Process for producing 1,3-propanediol and/or 3-hydroxypropionic acid:US20070148749[P]. 2006-12-13.
[28] HUANG Y, LI Z, SHIMIZU K, et al. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae[J]. Bioresource Technology, 2012, 103(1):351-359.
[29] KO Y, ASHOK S, ZHOU S, et al. Aldehyde dehydrogenase activity is important to the production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae[J]. Process Biochem., 2012, 47(7):1135-1143.
[30] HOLO H, SIREV G R. Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus[J]. Archives of Microbiology, 1986, 145(2):173-180.
[31] 辛越勇, 王洪杰, 倪俊, 等. 新型固碳途径——3-羟基丙酸循环的研究进展[J]. 微生物学通报, 2013, 40(2):304-315. XIN Y Y, WANG H J, NI J, et al. The progress of studies on a unique carbon dioxide fixation pathway:3-hydroxypropionate cycle[J]. Microbiology China, 2013, 40(2):304-315.
[32] ZARZYCKI J, BRECHT V, MULLER M, et al. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50):21317-21322.
[33] BERG I A, KOCKELKORN D, BUCKEL W, et al. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea[J]. Science, 2007, 318(5857):1782-1786.
[34] YE Z, LI X, CHENG Y, et al. Evaluation of 3-hydroxypropionate biosynthesis in vitro by partial introduction of the 3- hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula[J]. J. Ind. Microbiol. Biotechnol., 2016, 43(9):1313-1321.
[35] LIAO H H, GOKAM R R, GORT S J, et al. Production of 3-hydropropionic acid using beta-alanine/pyruvate aminotransferase:US 20070107080 A1[P]. 2007-05-10.
[36] JESSEN H, RUSH B, HURYTA J, et al. Composition and methods for 3-hydroxypropionic acid production:WO9090918[P]. 2015- 07-28.
[37] MIYOSHI T, HARADA T. Utilization of 2-butyne-1,4-diol by a strain of Fusarium merismoides[J]. Journal of Fermentation Technology, 1974, 52(6):388-392.
[38] HASEGAWA J, OGURA M, KANEMA H, et al. Production of beta-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid[J]. Journal of Fermentation Technology, 1982, 60(6):591-594.
[39] KLEMPIER N, DE RAADT A, FABER K, et al. Selective transformation of nitriles into amides and carboxylic acids by an immobilized nitrilase[J]. Tetrahedron Lett.,1991, 32(3):341-344.
[40] BRAMUCCI M G, DICOSIMD R, FALLON R, et al. 3-Hydroxycarboxylic acid production and use in branched polymers:US6562603[P]. 2003-05-13.
[41] ZHANG Q, GONG J S, DONG T T, et al. Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid[J]. Bioprocess and Biosystems Engineering, 2017, 40(6):901-910.
[42] Cargill develops new organic acid fermentation[J]. Ind. Bioprocess, 2002, 24(12):3.
[43] WALSH P, DE J E, HIGSON A, et al. Bio-based chemicals:value added products from biorefineries[J]. Iea Bioenergy, 2012:1-37.
[44] FOUNDATION W A R, SUTHERS P F, CAMERON D C. Production of 3-hydroxypropionic acid in recombinant organism:EP6852517 B1[P]. 2005-02-08.
[45] KUMAR V, SANKARANARAYANAN M, JAE K E, et al. Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase[J]. Applied Microbiology and Biotechnology, 2012, 96(2):373-383.
[46] KILDEGAARD K R, HALLSTR M B M, BLICHER T H, et al. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance[J]. Metabolic Engineering, 2014, 26:57-66.
[47] CHEN Y, BAO J, KIM I K, et al. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2014, 22:104-109.
[48] CARDENAS J, DA SILVA N A. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis[J]. Metabolic Engineering, 2016, 36:80-89.
[49] CHEN X, YANG X, SHEN Y, et al. Increasing malonyl-CoA derived product through controlling the transcription regulators of phospholipid synthesis in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2017, 6:905-912.
[50] RAJ S M, RATHNASINGH C, JO J E, et al. Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain[J]. Process Biochem., 2008, 43(12):1440-1446.
[51] TSURUNO K, HONJO H, HANAI T. Enhancement of 3-hydroxypropionic acid production from glycerol by using a metabolic toggle switch[J]. Microbial Cell Factories, 2015, 14(1):155-168.
[52] LIU C S, WANG Q, XIAN M, et al. Dissection of malonyl-coenzyme a reductase of Chloroflexus aurantiacus results in enzyme activity improvement[J]. PLoS One, 2013, 8(9):75554
[53] LIU M, DING Y M, CHEN H L, et al. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion[J]. BMC Microbiol, 2017, 17(9):10-18.
[54] SONG C W, KIM J W, CHO I J, et al. Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route[J]. ACS Synthetic Biology, 2016, 5(11):1256-1263.
[55] SHIH P M, ZARZYCKI J, NIYOGI K K, et al. Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium[J]. J. Biol. Chem., 2014, 289(14):9493-9500.
[56] LAN E I, CHUANG D S, SHEN C R, et al. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942[J]. Metabolic Engineering, 2015, 31:163-170.
[57] ASHOK S, MOHAN R S, KO Y, et al. Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT[J]. Metabolic Engineering, 2013, 15(1):10-24.
[58] HUANG Y N, LI Z M, SHIMIZU K, et al. Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions[J]. Bioresource Technology, 2013, 128:505-512.
[59] MOHAN R S, RATHNASINGH C, JUNG W C, et al. Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli[J]. Applied Microbiology and Biotechnology, 2009, 84(4):649-657.
[60] KELLER M W, SCHUT G J, LIPSCOMB G L, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15):5840-5845.
[61] SABET-AZAD R, SARDARI R R R, LINARES-PAST N J A, et al. Production of 3-hydroxypropionic acid from 3- hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes[J]. Bioresource Technology, 2015, 180:214-221.
[62] GOPI G R, GANESH N, PANDIARAJ S, et al. A study on enhanced expression of 3-hydroxypropionic acid pathway genes and impact on its production in Lactobacillus reuteri[J]. Food Technol. Biotechnol., 2015, 53(3):331-336.
[63] RAMAKRISHNAN G G, NEHRU G, SUPPURAM P, et al. Bio-transformation of glycerol to 3-hydroxypropionic acid using resting cells of Lactobacillus reuteri[J]. Current Microbiology, 2015, 71(4):517-523.
[64] SUYAMA A, HIGUCHI Y, URUSHIHARA M, et al. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains[J]. Journal of Bioscience and Bioengineering, 2017, 124(4):392-399.
[65] ZHANG Y H. Production of biofuels and biochemicals by in vitro synthetic biosystems:opportunities and challenges[J]. Biotechnology Advances, 2015, 33(7):1467-1483.
[66] FU J, HUO G, FENG L, et al. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production[J]. Biotechnology for Biofuels, 2016, 9:90-103.
[67] JAKOCIUNAS T, JENSEN M K, KEASLING J D. CRISPR/Cas9 advances engineering of microbial cell factories[J]. Metabolic Engineering, 2016, 34:44-59.
[68] HUANG J, WANG Y, ZHAO J. CRISPR editing in biological and biomedical investigation[J]. Journal of Cellular Physiology, 2018, 233(5):3875-3891.
[69] KHAN M H U, KHAN S U, MUHAMMAD A, et al. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology[J]. Journal of Cellular Physiology, 2018, 233(6):4578-4594. |