[1] 龚久炎, 宋文东, 陈嘉琳, 等. Ag/AgBr-硅藻土复合光催化剂的制备及其可见光光催化性能[J]. 化工进展, 2017, 36(9):3309-3315. GONG J Y, SONG W D, CHEN J L, et al. Ag/AgBr-diatomaceous earth composite photocatalysts with superior photocatalytic performance under visible-light irrdiation[J]. Chemical Industry and Engineering Progress, 2017, 36(9):3309-3315.
[2] TONG H, OUYANG S, BI Y, et al. Nano-photocatalytic materials:possibilities and challenges[J]. Advanced Materials, 2012, 24(2):229-251.
[3] CHEN M, YU S, ZHANG X, et al. Insights into the photosensitivity of BiOCl nanoplates with exposing {001} facets:the role of oxygen vacancy[J]. Superlattices and Microstructures, 2016, 89:275-281.
[4] ZHU L P, LIAO G H, BING N C, et al. Self-assembled 3D BiOCl hierarchitectures:tunable synthesis and characterization[J]. CrystEngComm, 2010, 12(11):3791-3796.
[5] LI Z, QU Y, HU K, et al. Improved photoelectrocatalytic activities of BiOCl with high stability for water oxidation and MO degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime[J]. Applied Catalysis B:Environmental, 2017, 203:355-362.
[6] LEI Y, WANG G, SONG S, et al. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[J]. CrystEngComm, 2009, 11(9):1857-1862.
[7] LI Y, LIU J, JIANG J, et al. UV-resistant superhydrophobic BiOCl nanoflake film by a room-temperature hydrolysis process[J]. Dalton Transactions, 2011, 40(25):6632-6634.
[8] YE L, ZAN L, TIAN L, et al. The {001} facets-dependent high photoactivity of BiOCl nanosheets[J]. Chemical Communications, 2011, 47(24):6951-6953.
[9] 毛晓明. 新型BiOCl光催化剂的可控合成及性能强化研究[D]. 太原:太原理工大学, 2014. MAO X M. Study on the controlled synthesis of novel BiOCl photocatalysis and their enhanced performance[D]. Taiyuan:Taiyuan University of Technology, 2014.
[10] CHENG G, XIONG J, STADLER F J. Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity[J]. New Journal of Chemistry, 2013, 37(10):3207-3213.
[11] XIONG J, CHENG G, QIN F, et al. Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation[J]. Chemical Engineering Journal, 2013, 220:228-236.
[12] XIONG J, CHENG G, LI G, et al. Well-crystallized square-like 2D BiOCl nanoplates:mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance[J]. RSC Advances, 2011, 1(8):1542-1553.
[13] GE J, GUO X, XU X, et al. A eutectic mixture of choline chloride and urea as an assisting solvent in the synthesis of flower-like hierarchical BiOCl structures with enhanced photocatalytic activity[J]. RSC Advances, 2015, 5(61):49598-49605.
[14] YIN C, ZHU S, CHEN Z, et al. One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation[J]. Journal of Materials Chemistry A, 2013, 1(29):8367-8378.
[15] ZHANG K, LIANG J, WANG S, et al. BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities[J]. Crystal Growth & Design, 2012, 12(2):793-803.
[16] 陶志银. 基于葡萄糖的几种功能微/纳米材料的制备, 表征及性质研究[D]. 合肥:安徽大学, 2010. TAO Z Y. Synthesis, characterization and property study of several functional micro/nano materials based on glucose[D]. Hefei:Anhui University, 2010.
[17] GONG X, LU W, PAAU M C, et al. Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging[J]. Analytica Chimica Acta, 2015, 861:74-84.
[18] LI M, HUANG H, YU S, et al. Simultaneously promoting charge separation and photoabsorption of BiOX (X=Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar[J]. Applied Surface Science, 2016, 386:285-295.
[19] DONG S, PI Y, LI Q, et al. Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites:mechanism and degradation pathways[J]. Journal of Alloys and Compounds, 2016, 663:1-9.
[20] TRYBA B, MORAWSKI A W, TSUMURA T, et al. Hybridization of adsorptivity with photocatalytic activity-carbon-coated anatase[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 167(2/3):127-135.
[21] INAGAKI M, KOJIN F, TRYBA B, et al. Carbon-coated anatase:the role of the carbon layer for photocatalytic performance[J]. Carbon, 2005, 43(8):1652-1659.
[22] 胡静. 吸收光谱拓展对光催化氧化NO的性能影响研究[D]. 杭州:浙江大学, 2017. HU J. Research on the impact of absorpotion expansion on NO photocatalytic oxidation performance[D]. Hangzhou:Zhejiang University, 2017.
[23] TIAN J, SANG Y, YU G, et al. A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Advanced Materials, 2013, 25(36):5075-5080.
[24] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10):1051-1069.
[25] JIANG J, ZHAO K, XIAO X, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society, 2012, 134(10):4473-4476.
[26] BAI Y, WANG P Q, LIU J Y, et al. Enhanced photocatalytic performance of direct Z-scheme BiOCl/g-C3N4 photocatalysts[J]. RSC Advances, 2014, 4(37):19456-19461.
[27] YE L, LIU J, JIANG Z, et al. Facets coupling of BiOBr/g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Applied Catalysis B:Environmental, 2013, 142:1-7.
[28] SHOUBIN X U, JIANG L, HAIGANG Y, et al. Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization[J]. Chinese Journal of Catalysis, 2011, 32(3/4):536-545.
[29] JIN R R, YOU J G, ZHANG Q, et al. Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Acta Physico-Chimica Sinica, 2014, 30(9):1706-1712.
[30] LI J, YU Y, ZHANG L. Bismuth oxyhalide nanomaterials:layered structures meet photocatalysis[J]. Nanoscale, 2014, 6(15):8473-8488.
[31] YANG J, CHEN C, JI H, et al. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation:photoelectrocatalytic study by TiO2-film electrodes[J]. The Journal of Physical Chemistry B, 2005, 109(46):21900-21907. |