化工进展 ›› 2022, Vol. 41 ›› Issue (1): 210-220.DOI: 10.16085/j.issn.1000-6613.2021-0175
吕鹏刚1(), 刘涛1, 叶行2, 黄校亮1, 段宏昌1, 谭争国1
收稿日期:
2021-01-25
修回日期:
2021-04-11
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
吕鹏刚
作者简介:
吕鹏刚(1995—),男,硕士,助理工程师,研究方向为炼油催化剂开发。E-mail:LYU Penggang1(), LIU Tao1, YE Hang2, HUANG Xiaoliang1, DUAN Hongchang1, TAN Zhengguo1
Received:
2021-01-25
Revised:
2021-04-11
Online:
2022-01-05
Published:
2022-01-24
Contact:
LYU Penggang
摘要:
流化催化裂化(FCC)是炼厂最重要的二次加工工艺,也是石油化工应用中丙烯的第二大来源。随着丙烯需求消费的不断增长,在FCC催化剂中添加增产丙烯助剂是一种灵活、高效提高丙烯收率的途径,其助剂主要由活性组分ZSM-5分子筛和基质组成。本文主要从活性组分ZSM-5分子筛和基质两方面分别介绍目前阶段增产丙烯助剂的研究现状,通过对ZSM-5分子筛的改性来提升活性组分的性能,重点综述了调变分子筛的酸度、改善孔结构及粒度和提高水热稳定性;分析了基质孔结构和酸性的梯度分布对助剂在FCC工艺中提高原料的转化、减少生焦和增产丙烯的重要作用。最后指出在合成分子筛过程中引入改性元素,减少元素流失,提高改性元素的利用率,同时在助剂基质方面的研究仍有不足,开发低成本、大孔径和适宜酸度的高性能基质也是增产丙烯助剂未来的研究方向。
中图分类号:
吕鹏刚, 刘涛, 叶行, 黄校亮, 段宏昌, 谭争国. FCC工艺中提升增产丙烯助剂性能研究进展[J]. 化工进展, 2022, 41(1): 210-220.
LYU Penggang, LIU Tao, YE Hang, HUANG Xiaoliang, DUAN Hongchang, TAN Zhengguo. Advances in improving the performance of additives for increasing propylene production in FCC process[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 210-220.
43 | JERMY B R, SIDDIQUI M A B, AITANI A M, et al. Utilization of ZSM-5/MCM-41 composite as FCC catalyst additive for enhancing propylene yield from VGO cracking[J]. Journal of Porous Materials, 2012, 19(4): 499-509. |
44 | KONNO H, OKAMURA T, NAKASAKA Y, et al. Effects of crystal size and Si/Al ratio of MFI-type zeolite catalyst on n-hexane cracking for light olefin synthesis[J]. Journal of the Japan Petroleum Institute, 2012, 55(4): 267-274. |
45 | MOCHIZUKI H, YOKOI T, IMAI H, et al. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane[J]. Microporous & Mesoporous Materials, 2011, 145(1/2/3): 165-171. |
46 | LYU J, HUA Z L, GE T G, et al. Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking[J]. Microporous & Mesoporous Materials, 2017, 247: 31-37. |
47 | TAKAHASHI A, XIA W, NAKAMURA I, et al. Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts[J]. Applied Catalysis A: General, 2012, 423/424: 162-167. |
48 | ZHUANG J Q, MA D, YANG G, et al. Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J]. Journal of Catalysis, 2004, 228(1): 234-242. |
49 | XUE N H, OLINDO R, LERCHER J A. Impact of forming and modification with phosphoric acid on the acid sites of HZSM-5[J]. Journal of Physical Chemistry C, 2010, 114(37): 15763-15770. |
50 | VÉDRINE J C, AUROUX A, DEJAIFVE P, et al. Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite[J]. Journal of Catalysis, 1982, 73(1): 147-160. |
1 | MOHAMMED F A, BASHEER A A, MOHAMMED H A, et al. ZSM-5 zeolite based additive in FCC process: a review on modifications for improving propylene production[J]. Catalysis Surveys from Asia, 2020, 24(1): 1-10. |
2 | 王梦瑶, 周嘉文, 任天华, 等. 催化裂化多产丙烯[J]. 化工进展, 2015, 34(6): 1619-1625. |
WAMG Mengyao, ZHOU Jiawen, REN Tianhua, et al. Catalytic craking processes for maximizing propylene production[J]. Chemical Industry and Engineering Progress, 2015, 34(6): 1619-1625. | |
3 | 陈永利, 陈浩, 郭振宇. 丙烯产业发展现状及趋势分析[J]. 炼油技术与工程, 2019, 49(12): 1-5. |
51 | SONG Z X, LIU W, CHEN C, et al. Production of propylene from ethanol over ZSM-5 co-modified with zirconium and phosphorus[J]. Reaction Kinetics Mechanisms & Catalysis, 2013, 109(1): 221-231. |
52 | SONG Z X, TAKAHASHI A, NAKAMURA I, et al. Phosphorus-modified ZSM-5 for conversion of ethanol to propylene[J]. Applied Catalysis A: General, 2010, 384(1/2): 201-205. |
53 | BIJ H E V D, WECKHUYSEN B M. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7406-7428. |
3 | CHEN Yongli, CHEN Hao, GUO Zhenyu. Present situation and trend analysis of propylene industry[J]. Petroleum Refinery Engineering, 2019, 49(12): 1-5. |
4 | 张忠东, 柳召永, 高雄厚, 等. 催化裂化装置平衡剂复配丙烯助剂的制备与性能[J]. 石化技术与应用, 2020, 38(5): 304-308. |
ZHANG Zhongdong, LIU Zhaoyong, GAO Xionghou, et al. Preparation and properties of propylene additive for equilibrium catalyst blending in FCC unit[J]. Petrochemical Technology & Application, 2020, 38(5): 304-308. | |
5 | 武俊平. 催化裂化增产丙烯助剂LTB-1的工业应用[J]. 石油炼制与化工, 2007(5): 10-13. |
WU Junping. Commercial application of LTB-1 FCC additive for enhancing propylene yield[J]. Petroleum Processing and Petrochemicals, 2007(5): 10-13. | |
6 | 王巍慈. HOA-03增产丙烯助剂的工业应用[J]. 石化技术与应用, 2007(3): 244-246,249. |
WANG Weici. Industrial application of HOA-03 type additive for producing more propylene[J]. Petrochemical Technology & Application, 2007(3): 244-246, 249. | |
7 | 何立柱, 郑云锋, 杨玉峰, 等. 多产丙烯高辛烷值助剂LHP-A的工业应用[J]. 石化技术与应用, 2020, 38(4): 255-258. |
HE Lizhu, ZHENG Yunfeng, YANG Yufeng, et al. Industrial application of propylene maximizing and high octane number additive LHP-A[J]. Petrochemical Technology & Application, 2020, 38(4): 255-258. | |
8 | 曾光乐, 陈蓓艳, 王中军, 等. 多产丙烯和异丁烯催化裂化助剂FLOS-Ⅲ的工业应用[J]. 石油炼制与化工, 2015, 46(3): 24-28. |
ZENG Guangle, CHEN Beiyan, WANG Zhongjun, et al. Application of catalytic cracking additive FLOS-Ⅲ for more propylene and isobutene[J]. Petroleum Processing and Petrochemicals, 2015, 46(3): 24-28. | |
9 | 王巍慈, 郑平. LTB-1型增产丙烯助剂在催化裂化装置上的应用[J]. 石化技术与应用, 2008(2): 163-165. |
WANG Weici, ZHENG Ping. Application of assistant LTB-1 for enhancing yield of propylene in FCCU[J]. Petrochemical Technology & Application, 2008(2): 163-165. | |
10 | 石功军. LOSA-1多产丙烯助剂的工业应用[J]. 石油炼制与化工, 2007(8): 10-14. |
SHI Gongjun. Industrial application of LOSA-1 FCC additive for enhancing propylene yield[J]. Petroleum Processing and Petrochemicals, 2007(8): 10-14. | |
11 | 吴志伟, 杨发新, 王庆明. ZCAT-HP丙烯增产助剂在重油催化裂化装置的工业应用[J]. 炼油技术与工程, 2004(11): 31-34. |
WU Zhiwei, YANG Faxin, WANG Qingmin. Commercial application of assistant ZCAT-HP for increasing propylene production in RFCC unit[J]. Petroleum Refinery Engineering, 2004(11): 31-34. | |
12 | VELTHOEN M E Z, ALESSANDRA L P, TEUNE I E, et al. Matrix effects in a fluid catalytic cracking catalyst particle: Influence on structure, acidity, and accessibility[J]. Chemistry: A European Journal, 2020, 26(52): 11995-12009. |
13 | HUSSAIN A I, AITANI A M, KUBU M, et al. Catalytic cracking of Arabian light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield[J]. Fuel, 2016, 167: 226-239. |
14 | LAPPAS A A, TRIANTAFILLIDIS C S, TSAGRASOULI Z A, et al. Development of new ZSM-5 catalyst-additives in the fluid catalytic cracking process for the maximization of gaseous alkenes yield[J]. Studies in Surface Science & Catalysis, 2002, 142: 807-814. |
15 | CORMA A, CORRESA E, MATHIEU Y, et al. Crude oil to chemicals: light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1):12-46. |
16 | WANG B, HAN C Y, ZHANG Q, et al. Studies on the preliminary cracking of heavy oils: the effect of matrix acidity and a proposal of a new reaction route[J]. Energy and Fuels, 2015, 29(9): 5701-5713. |
17 | 朱小顺, 张烈清, 林毅辉, 等. 新型FCC汽油辛烷值助剂开发[C]//湖南省石油学会产学研结合论坛. 湖南省石油学会, 2014: 43-47. |
ZHU Xiaoshun, ZHANG Lieqing, LIN Yihui, et al. Development of new FCC gasoline octane additives[C]//Hunan Petroleum Society Production-University-Research Combination Forum. Hunan Petroleum Society, 2014: 43-47. | |
18 | 曹庚振, 王林, 张艳惠, 等. 氮气物理吸附法和压汞法表征FCC催化剂孔径分布研究[J]. 炼油与化工, 2015, 26(1): 9-12. |
CAO Gengzhen, WANG Lin, ZHANG Yanhui, et al. Research on nitrogen physical adsorption method and mercury intrusion method used for characterization of FCC catalyst pore size distribution[J]. Refining and Chemical Industry, 2015, 26(1): 9-12. | |
19 | RANA M S, SAMANO V, ANCHEYTA J, et al. A review of recent advances on process technologies for upgrading of heavy oils and residua[J]. Fuel, 2007, 86 (9), 1216-1231. |
20 | 王斌, 张强, 韩东敏, 等. 催化剂基质Lewis及Brönsted酸性位强度对催化裂化小分子烯烃收率的影响[J]. 石油学报(石油加工), 2016, 32(4): 666-673. |
WANG Bin, ZHANG Qiang, HAN Dongmin, et al. Effects of acid strength of matrix in catalyst on the yield of small olefins during the catalytic cracking process[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(4): 666-673. | |
21 | GHRIB Y, FRINI-SRASRA, SRASRA E, et al. Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts[J]. Catalysis Science & Technology, 2018, 8: 716-725. |
22 | WAN J L, WEI Y X, LIU Z M, et al. A ZSM-5-based catalyst for efficient production of light olefins and aromatics from fluidized-bed naphtha catalytic cracking[J]. Catalysis Letters, 2008, 124(1/2): 150-156. |
23 | SIDDIQUI M A B, AITANI A M, SAEED M R, et al. Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst[J]. Topics in Catalysis, 2010, 53(19/20): 1387-1393. |
24 | LIN L F, ZHAO S F, ZHANG D W, et al. Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5[J]. ACS Catalysis, 2015, 5(7): 4048-4059. |
25 | AWAYSSA O, AI-YASSIR N, AITANI A, et al. Modified HZSM-5 as FCC additive for enhancing light olefins yield from catalytic cracking of VGO[J]. Applied Catalysis A: General, 2014, 477: 172-183. |
26 | YOSHIMURA Y, KIJIMA N, HAYAKAWA T, et al. Catalytic cracking of naphtha to light olefins[J]. Catalysis Surveys from Japan, 2001, 4(2): 157-167. |
27 | WANG X N, ZHAO Z, XU C M, et al. Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins[J]. Journal of Rare Earths, 2007, 25(3): 321-328. |
28 | 王鹏, 代振宇, 田辉平, 等. La、Ce改性对ZSM-5分子筛上烯烃裂解制丙烯反应的影响及其作用机理[J]. 石油炼制与化工, 2013, 44(5): 1-5. |
WANG Peng, DAI Zhenyu, TIAN Huiping, et al. Effect and mechanism of La or Ce modified ZSM-5 zeolite on olefin cracking for propylene[J]. Petroleum Processing and Petrochemicals, 2013, 44(5): 1-5. | |
29 | RANE N, KERSBULCK M, SANTEN R A V, et al. Cracking of n-heptane over Brönsted acid sites and Lewis acid Ga sites in ZSM-5 zeolite[J]. Microporous & Mesoporous Materials, 2008, 110(2/3): 279-291. |
30 | LI X F, SHEN B J, XU C M. Interaction of titanium and iron oxide with ZSM-5 to tune the catalytic cracking of hydrocarbons[J]. Applied Catalysis A: General, 2010, 375(2): 222-229. |
31 | JUNG J S, PARK J W, SEO G. Catalytic cracking of n-octane over alkali-treated MFI zeolites[J]. Applied Catalysis A: General, 2005, 288(1/2): 149-157. |
32 | WAKUI K, SATOH K, SAWADA G, et al. Cracking of n-butane over alkaline earth-containing HZSM-5 Catalysts[J]. Catalysis Letters, 2002, 84(3): 259-264. |
33 | MEHLA S, KUKADE S, KUMAR P, et al. Fine tuning H-transfer and β-scission reactions in VGO FCC using metal promoted dual functional ZSM-5[J]. Fuel, 2019, 242: 487-495. |
34 | OGURA M, SHINOMIYA S Y, TATENO J, et al. Alkali-treatment technique—New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Applied Catalysis A: General, 2001, 219(1/2): 33-43. |
35 | 徐天宇, 崔君君, 孙浩伟, 等. HZSM-5/Y复合分子筛的制备、表征及催化裂化性能研究[J]. 中国油脂, 2020, 45(1): 76-81. |
XU Tianyu, CUI Junjun, SUN Haowei, et al. Preparation characterization and catalytic cracking properties of HZSM-5/Y composite molecular sieve[J]. China Oils and Fats, 2020, 45(1): 76-81. | |
36 | SCHNEIDER D, MEHLHORN D, ZEIGERMANN P, et al. Transport properties of hierarchical micro-mesoporous materials[J]. Chemical Society Reviews, 2016, 47(12): 3439-3467. |
37 | KONNO H, OHNAKA R, NISHIMURA J I, et al. Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes[J]. Catalysis Science & Technology, 2014, 4(12): 4265-4273. |
38 | KIM J C, RYOO R, OPANASENKO M V, et al. Mesoporous MFI zeolite nanosponge as a high-performance catalyst in the pechmann condensation reaction[J]. ACS Catalysis, 2015, 5(4): 2596-2604. |
39 | VOGT E T C, WECKHUYSEN B M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7342-7370. |
40 | LI K H, VALLA J, GARCIA-MARTINEZ J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking[J]. ChemCatChem, 2014, 6(1): 46-66. |
41 | SIDDIQUI M A B, AITANI A M, SAEED M R, et al. Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives[J]. Fuel, 2011, 90(2): 459-466. |
42 | DONG X L, SHAIKH S, VITTENET J R, et al. Fine tuning the diffusion length in hierarchical ZSM-5 to maximize the yield of propylene in catalytic cracking of hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15832-15840. |
54 | XUE N H, CHEN X K, NIE L, et al. Understanding the enhancement of catalytic performance for olefin cracking: hydrothermally stable acids in P/HZSM-5[J]. Journal of Catalysis, 2007, 248(1): 20-28. |
55 | BLASCO T, CORMA A, MARTÍNEZ-TRIGUERO J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis, 2006, 237(2): 267-277. |
56 | ZHAO G L, TENG J W, XIE Z K, et al. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. Journal of Catalysis, 2007, 248(1): 29-37. |
57 | VINEK H, RUMPLMAYR G, LERCHER J A. Catalytic properties of postsynthesis phosphorus-modified H-ZSM5 zeolites[J]. Journal of Catalysis, 1989, 115(2): 291-300. |
58 | KAEDING W W, BUTTER S A. Production of chemicals from methanol. Ⅰ. Low molecular weight olefins[J]. Journal of Catalysis, 1980, 61(1): 155-164. |
59 | YANG G, ZHUANG J Q, WANG Y, et al. Enhancement on the hydrothermal stability of ZSM-5 zeolites by the cooperation effect of exchanged lanthanum and phosphoric species[J]. Journal of Molecular Structure, 2005, 737(2/3): 271-276. |
60 | KOLLMER F, HAUSMANN H, HÖLDERICH W F. (NH4)2SiF6-modified ZSM-5 as catalysts for direct hydroxylation of benzene with N2O[J]. Journal of Catalysis, 2004, 227(2): 398-407. |
61 | SÁNCHEZ N A, SANIGER J M, D’ESPINOSE DE LA CAILLERIE J B, et al. Dealumination and surface fluorination of H-ZSM-5 by molecular fluorine[J]. Microporous & Mesoporous Materials, 2001, 50(1): 41-52. |
62 | QIN Z, LAKISS L, GILSON J P, et al. Chemical equilibrium controlled etching of MFI-type zeolite and its influence on zeolite structure, acidity, and catalytic activity[J]. Chemistry of Materials, 2013, 25(14): 2759-2766. |
63 | JI Y J, YANG H H, YAN W. Catalytic cracking of n-hexane to light alkene over ZSM-5 zeolite: influence of hierarchical porosity and acid property[J]. Molecular Catalysis, 2018, 448: 91-99. |
64 | 赵国良, 滕加伟, 谢在库, 等. 氟硅酸铵改性的HZSM-5催化剂的表征及其碳四烯烃裂解催化性能[J]. 催化学报, 2005, 26(12): 1083-1087. |
ZHAO Guoliang, TENG Jiawei, XIE Zaiku, et al. Characterization and catalytic performance of (NH4)2SiF6-modified HZSM-5 catalyst for C4 olefin cracking[J]. Chinese Journal of Catalysis, 2005, 26(12): 1083-1087. | |
65 | GAO Z, TANG Y. Influence of Si/Al ratio on the properties of faujasites enriched in silicon[J]. Zeolites, 1988, 8(3): 232-237. |
66 | 杜艳泽, 秦波, 王会刚, 等. 多级孔分子筛在重油加氢裂化催化剂的应用进展[J]. 化工进展, 2021, 40(4): 1859-1868. |
DU Yanze, QIN Bo, WANG Huigang, et al. Development of hierarchical zeolites in hydrocracking catalysts of heavy oil[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1859-1868. | |
67 | WANG B, LI N, ZHANG Q, et al. Studies on the preliminary cracking: the reasons why matrix catalytic function is indispensable for the catalytic cracking of feed with large molecular size[J]. Journal of Energy Chemistry, 2016, 25(4): 641-653. |
68 | 秦素亚, 高伟, 张瑛, 等. 大孔径FCC催化剂基质的研究进展[J]. 石油化工, 2008, 37: 561-563. |
QING Suya, GAO Wei, ZHANG Ying, et al. Research progress of large pore size FCC catalyst matrix[J]. Petrochemical Technology, 2008, 37: 561-563. | |
69 | ISHIHARA A, WAKAMATSU T, NASU H, et al. Preparation of amorphous silica-aluminausing polyethylene glycol and its role for matrix in catalytic cracking of n-dodecane[J]. Applied Catalysis A: General, 2014, 478 (20): 58-65. |
70 | 刘从华, 邓友全, 高雄厚, 等. 酸改性高岭土基质FCC催化剂的反应性能[J]. 工业催化, 2003, 11(4): 49-52. |
LIU Conghua, DENG Youquan, GAO Xionghou, et al. Catalytic performance of FCC catalyst with acid-modified kaolin as matrix[J]. Industrial Catalysis, 2003, 11(4): 49-52. | |
71 | 王宁生, 闫伟建, 孙书红. 高岭土改性及其在FCC催化剂中的应用[J]. 工业催化, 2007, 15(4): 14-16. |
WANG Ningsheng, YAN Weijian, SUN Shuhong. Modification of kaolin and its application in FCC catalyst[J]. Industrial Catalysis, 2007, 15(4): 14-16. | |
72 | 王韵金, 卓润生, 王洪飞, 等. 富介孔-大孔的FCC催化剂基质制备工艺研究[J]. 广州化工, 2018, 46(19): 44-47. |
WANG Yunjin, ZHUO Runsheng, WANG Hongfei, et al. Preparation of macroporous-macroporous matrix for FCC catalyst[J]. Guangzhou Chemical Industry, 2018, 46(19): 44-47. | |
73 | CHEN W Z, HAN D M, SUN X H, et al. Studies on the preliminary cracking of heavy oils: contributions of various factors[J]. Fuel, 2013, 106: 498-504. |
74 | OTTERSTEDT J E, ZHU Y M, STERTE. Catalytic cracking of heavy oil over catalysts containing different types of zeolite Y in active and inactive matrices[J]. Applied Catalysis A: General, 1988, 38 (1): 143-155. |
75 | XU S J, ZHANG Q, FENG Z X, et al. A high-surface-area silicoaluminophosphate material rich in Brönsted acid sites as a matrix in catalytic cracking[J]. Journal of Natural Gas Chemistry, 2012, 21 (6): 685-693. |
76 | FENG R, LIU S T, BAI P, et al. Preparation and characterization of γ-Al2O3 with rich Brönsted acid sites and its application in the fluid catalytic cracking process[J]. The Journal of Chemical Physics, 2014, 118 (12): 6226-6234. |
77 | HOLLAND B T, SUBRAMANI V, GANGWAL S K. Utilizing colloidal silica and aluminum-doped colloidal silica as a binder in FCC catalysts: effects on porosity, acidity, and microactivity[J]. Industrial & Engineering Chemistry Research, 2007, 46 (13): 4486-4496 |
78 | LIU H, ZHOU Y M, ZHANG Y W, et al. Influence of binder on the catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2008, 47(21): 8142-8147. |
79 | 刘全新, 袁颖, 杨恒吉, 等. 黏结剂对FCC汽油加氢改质催化剂性能的影响研究[J]. 当代化工, 2018, 47(2): 272-274. |
LIU Quanxin, YUAN Ying, YANG Hengji. et al. Effect of binder on catalytic performance of FCC gasoline hydro-upgrading catalyst[J]. Contemporary Chemical Industry, 2018, 47(2): 272-274. | |
80 | ZHANG Y W, ZHOU Y M, QIU A D, et al. Effect of alumina binder on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2006, 45(7): 2213-2219. |
81 | TARIGHI S, JUIBARI N M, BINAEIZADEH M. Different binders in FCC catalyst preparation: impact on catalytic performance in VGO cracking[J]. Research on Chemical Intermediates, 2019, 45(4): 1737-1752. |
82 | LUCAS A D, SÁNCHEZ P, FÚNEZ A, et al. Influence of clay binder on the liquid phase hydroisomerization of n-octane over palladium-containing zeolite catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2006, 259(1/2): 259-266. |
83 | WHITING G T, CHOWDHURY A D, OORD R, et al. The curious case of zeolite-clay/binder interactions and their consequences for catalyst preparation[J]. Faraday Discussions, 2016, 188: 369-386. |
84 | 李侃, 王栋, 翟佳宁, 等. 黏结剂对催化裂化催化剂物化性质的影响[J]. 应用化工, 2014, 43(3): 485-487. |
LI Kan, WANG Dong, ZHAI Jianing, et al. The effect of binder on the properties of FCC catalyst[J]. Applied Chemical Industry, 2014, 43(3): 485-487. | |
85 | PETROVIC R, MILONJIC S, JOKANOVIC V, et al. Influence of synthesis parameters on the structure of boehmite sol particles[J]. Powder Technology, 2003, 133(1/2/3):185-189. |
86 | ZHENG Y S, SONG J Q, XU X Y, et al. Peptization mechanism of boehmite and its effect on the preparation of a fluid catalytic cracking catalyst[J]. Sci-Tech Information Development & Economy, 2007, 53(24): 10029-10034. |
[1] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[2] | 方龙龙, 郑文姬, 宁梦佳, 张明扬, 杨雨晴, 代岩, 贺高红. 功能化Zr-MOF强化混合基质膜CO2分离[J]. 化工进展, 2022, 41(9): 4954-4962. |
[3] | 赵国珂, 潘国元, 张杨, 于浩, 赵慕华, 唐功庆, 刘轶群. 石墨烯基材料在CO2分离膜领域的研究进展[J]. 化工进展, 2022, 41(11): 5896-5911. |
[4] | 刘艳, 年佩, 张轩, 黄锐, 王政, 姜男哲. Langmuir-Blodgett法制备高H2选择性取向ZSM-5分子筛分离膜[J]. 化工进展, 2021, 40(4): 2243-2250. |
[5] | 潘一, 徐明磊, 侯冰, 郭奇, 杨双春, KANTOMA Daniel Bala. 温敏聚合物在油气开采中的研究进展[J]. 化工进展, 2021, 40(4): 2109-2119. |
[6] | 黄占凯, 赵福利, 王会, 赵迎秋, 梁雨翔. 端氨基嵌段聚醚类油浆沉降剂的制备与表征[J]. 化工进展, 2021, 40(2): 755-762. |
[7] | 宁梦佳, 代岩, 郗元, 章星, 刘红晶, 贺高红. Cu(Qc)2强化Pebax混合基质膜分离CO2[J]. 化工进展, 2021, 40(10): 5652-5659. |
[8] | 刘月华, 上官炬, 刘守军, 杨颂, 杜文广. 铁镍复合助剂对煤热解过程中氮迁移规律的影响[J]. 化工进展, 2021, 40(1): 164-172. |
[9] | 李丹丹, 谈继淮, 胡丁根, 陈建斌, 刘祝兰, 曹云峰. 水性聚氨酯表面施胶剂的制备、改性及应用研究进展[J]. 化工进展, 2021, 40(1): 366-377. |
[10] | 陈丙晨, 徐积斌, 万超, 董亮亮, 张春芳, 白云翔. 用于CO2/CH4分离的cPIM-1/ZIF-8混合基质膜的制备[J]. 化工进展, 2020, 39(9): 3518-3524. |
[11] | 时飞, 李奕帆. 混合基质膜在碳捕集领域的研究进展[J]. 化工进展, 2020, 39(6): 2453-2462. |
[12] | 叶宇玲, 雷骞, 陈洪林, 张小明. 模板剂对ZSM-5分子筛甲醛环化制三聚甲醛性能的影响[J]. 化工进展, 2020, 39(12): 5049-5056. |
[13] | 丁姣, 赖锐豪, 陈文杰, 黄素青, 尹国强. 化学助剂优化静电纺角蛋白纳米纤维性能进展[J]. 化工进展, 2020, 39(10): 4155-4163. |
[14] | 马占华,李帅,姜爱晶,李军,孙兰义,安长华. 助剂Zn对PtSn/Al2O3催化剂丙烷脱氢性能的影响[J]. 化工进展, 2019, 38(08): 3670-3678. |
[15] | 张春梅, 付廷俊, 邵娟, 马哲, 王玉杰, 马倩, 崔丽萍, 李忠. 介孔结构和助剂Zn对不同晶粒大小ZSM-5催化甲醇制芳烃反应性能的影响[J]. 化工进展, 2019, 38(04): 1758-1767. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |