1 |
阙志刚, 吴胜利, 王金生, 等. 无烟煤代替焦粉燃烧行为及对烧结NOx排放的影响[J]. 钢铁, 2019, 54(10): 23-29.
|
|
QUE Zhigang, WU Shengli, WANG Jinsheng, et al. Combustion behavior of anthracite substituting for coke and its effects on NOx emission in sintering process[J]. Iron and Steel, 2019, 54(10): 23-29.
|
2 |
赵珊. 中国煤炭资源现状及建议[J]. 广州化工, 2014, 42(15): 52-53.
|
|
ZHAO Shan. The status and suggestions of coal resources in China[J]. Guangzhou Chemical Industry, 2014, 42(15): 52-53.
|
3 |
霍沫霖, 赵佳, 徐朝, 等. 中国散烧煤消费地图及影响因素研究[J]. 中国电力, 2018, 51(1): 139-146.
|
|
HUO Molin, ZHAO Jia, XU Chao, et al. China scattered coal consumption map and influence factors[J]. Electric Power, 2018, 51(1): 139-146.
|
4 |
胡月. 论我国煤炭资源利用的环境影响现状及对策[J]. 山西焦煤科技, 2015, 39(7): 45-48.
|
|
HU Yue. Discussion on current situation of environmental influence and countermeasures on coal resources utilization in our country[J]. Shanxi Coking Coal Science & Technology, 2015, 39(7): 45-48.
|
5 |
XUE B, MITCHELL B, GENG Y, et al. A review on China’s pollutant emissions reduction assessment[J]. Ecological Indicators, 2014, 38: 272-278.
|
6 |
LI C Z, LI L T. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel, 2000, 79(15): 1899-1906.
|
7 |
ZHANG L, WEN X, LEI Z, et al. Study on the mechanism of a manganese-based catalyst for catalytic NOx flue gas denitration[J]. Aip Advances, 2018, 8(4): 045004.
|
8 |
WU Z, SUGIMOTO Y, KAWASHIMA H, et al. The influence of mineral matter and catalyst on nitrogen release during slow pyrolysis of coal and related material[J]. Energy & Fuels, 2002, 16(2): 451-456.
|
9 |
ZHIJUN S, SHENG S, XING N, et al. The investigation of NOx formation and reduction during O2/CO2 combustion of raw coal and coal char[J]. Energy Procedia, 2015, 66: 69-72.
|
10 |
谢建军, 杨学民, 吕雪松, 等. 煤热解过程中硫氮分配及迁移规律研究进展[J]. 化工进展, 2004, 23(11): 1214-1218.
|
|
XIE Jianjun, YANG Xuemin, Xuesong LYU, et al. Progress on transformation behavior of sulfur and nitrogen during coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2004, 23(11): 1214-1218.
|
11 |
FENG J, LI C Z, PRATT K C, et al. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass[J]. Fuel, 2001, 80(15): 2131-2138.
|
12 |
LIU L, KUMAR S, WANG Z, et al. Catalytic effect of metal chlorides on coal pyrolysis and gasification Part I. Combined TG-FTIR study for coal pyrolysis[J]. Thermochimica Acta, 2017, 655: 331-336.
|
13 |
WANG M Y, JIN L J, LI Y, et al. In situ catalytic upgrading of coal pyrolysis tar coupled with CO2 reforming of methane over Ni-based catalysts[J]. Energy & Fuels, 2017, 31(9).
|
14 |
AMIN M N, LI Y, RAZZAQ R, et al. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two staged bed reactor[J]. Journal of Analytical & Applied Pyrolysis, 2016, 118: 54-62.
|
15 |
NAOTO T, YUSUKE M, YUUKI M, et al. Coprocessing of pyrolytic nitrogen removal of low-rank coals and reduction of limonite ore[J]. Energy & Fuels, 2017, 31(4): 3885-3891.
|
16 |
MORI H, ASAMI K, OHTSUKA Y. Role of iron catalyst in fate of fuel nitrogen during coal pyrolysis[J]. Energy & Fuels, 1996, 10(4): 1022-1027.
|
17 |
顾颖, 刘小伟, 乔瑜, 等. 煤热解过程中FeCl3对氮分布规律的影响[J]. 中国电机工程学报, 2011, 31(35): 59-64.
|
|
GU Ying, LIU Xiaowei, QIAO Yu, et al. Effect of FeCl3 on nitrogen distribution in coal pyrolysis[J]. Proceedings of the CSEE, 2011, 31(35): 59-64.
|
18 |
HAN J Z, LIU X X, YUE J R, et al. Catalytic upgrading of in situ coal pyrolysis tar over Ni char catalyst with different additives[J]. Energy & Fuels, 2014, 28(8): 4934-4941.
|
19 |
何立模, 胡松, 汪一, 等. 改性镍基催化剂催化甲苯重整与积碳特性研究[J]. 工程热物理学报, 2016, 37(5): 183-189.
|
|
HE Limo, HU Song, WANG Yi, et al. Catalytic performance and coke characterization over modified Ni-based catalysts for steam reforming of toluene[J]. Journal of Engineering Thermophysics, 2016, 37(5): 183-189.
|
20 |
徐明艳, 常丽萍. 热解过程中煤氮定向转化为N2的研究[J]. 煤化工, 2005(6): 40-44.
|
|
XU Mingyan, CHANG Liping. Study on the conversion of nitrogen in the coal into N2 during pyrolysis[J]. Coal Chemical Industry, 2005(6): 40-44.
|
21 |
CHENG X, WANG L Y, WANG Z Q, et al. Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55(50): 12710-12722.
|
22 |
MURAKAMI K J, ARAI M, SHIRAI M. Pyrolysis behavior of nickel loaded Loy Yang brown coals: influence of calcium additive[J]. Energy & Fuels, 2002, 16(3): 752-755.
|
23 |
ZHANG W, LI W, LI Y, et al. One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution[J]. Catalysis Today, 2019, 335: 326-332.
|
24 |
BRANNAN C J, CURTIS C W, CRONAUER D C. Interactions of swelling solvents and catalyst precursors in coal liquefaction systems[J]. Fuel Processing Technology, 1997, 51(1): 63-81.
|
25 |
刘源, 贺新福, 杨伏生, 等. 热解温度及气氛变化对神府煤热解产物分布的影响[J]. 煤炭学报, 2015, 40(S2): 497-504.
|
|
LIU Yuan, HE Xinfu, YANG Fusheng, et al. Impacts of pyrolysis temperature and atmosphere on product distribution of Shenfu coal pyrolysis[J]. Journal of China Coal Society, 2015, 40(S2): 497-504.
|
26 |
LI Q, WANG Z H, HE Y, et al. Pyrolysis characteristics and evolution of char structure during pulverized coal pyrolysis in drop tube furnace: influence of temperature[J]. Energy & Fuels, 2017, 31(5): 4799-4807.
|
27 |
闫晓, 车得福, 徐通模. 煤热解过程中焦炭氮变化规律的试验研究[J]. 西安交通大学学报, 2004(9): 980-984.
|
|
YAN Xiao, CHEN Defu, XU Tongmo. Experimental investigation on char nitrogen conversion during coal pyrolysis[J]. Journal of Xi’an Jiaotong University, 2004(9): 980-984.
|
28 |
ZAMBRANO N P, DUARTE L J, et al. Delayed coker coke characterization: correlation between process conditions, coke composition, and morphology[J]. Energy & Fuels, 2018, 32(3): 2722-2732.
|
29 |
LIN S Y, HIRATO M, HORIO M. The characteristics of coal char gasification at around ash melting temperature[J]. Energy & Fuels, 1994, 8(3): 598-606.
|
30 |
SHIM H S, HURT R H. Thermal annealing of chars from diverse organic precursors under combustion-like conditions[J]. Energy & Fuels, 2000, 14(2): 340-348.
|
31 |
ASHOK J, KAWL S. Nickel iron alloy supported over iron alumina catalysts for steam reforming of biomass tar model compound[J]. ACS Catalysis, 2014, 4(1): 289-301.
|
32 |
CAO J P, SHI P, ZHAO X Y, et al. Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst[J]. Fuel Processing Technology, 2014, 123: 34-40.
|
33 |
DONALD J, XU C, HASHIMOTO H, et al. Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere[J]. Applied Catalysis A: General, 2010, 375(1): 124-133.
|
34 |
XU C, DONALD J, BYAMBAJAV E, et al. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification[J]. Fuel, 2010, 89(8): 1784-1795.
|
35 |
TIAN F J, LI B Q, CHEN Y, et al. Formation of NOx precursors during the pyrolysis of coal and biomass. Part V. Pyrolysis of a sewage sludge[J]. Fuel, 2002, 81(17): 2203-2208.
|
36 |
LIU H F, LIU Y H, LIU Y H, et al. Experimental investigation on the conversion of nitrogenous gas products during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2008, 36(2): 134-138.
|
37 |
孙林兵, 倪中海, 张丽芳, 等. 煤热解过程中氮、硫析出形态的研究进展[J]. 洁净煤技术, 2002(3): 47-50.
|
|
SUN Linbing, NI Zhonghai, ZHANG Lifang, et al. Research advancement of nitrogen and sulfur separate out form in coal pyrolysis process[J]. Clean Coal Technology, 2002(3): 47-50.
|
38 |
GONG B, BUCKLEY A N, LAMB R N, et al. XPS determination of the forms of nitrogen in coal pyrolysis chars[J]. Surface and Interface Analysis, 1999, 28(1): 126-130.
|
39 |
ZHAN H, ZHUANG X Z, SONG Y P, et al. Insights into the evolution of fuel-N to NOx precursors during pyrolysis of N-rich nonlignocellulosic biomass[J]. Applied Energy, 2018, 219: 20-33.
|
40 |
DENG L, JIN X, ZHANG Y, et al. Release of nitrogen species during rapid pyrolysis of model coals[J]. Energy & Fuels, 2013, 27(1): 430-439.
|
41 |
WU Z H, SUGINMOTO Y, KAWASHIMA H. Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrrolic or pyridinic nitrogen[J]. Fuel, 2001, 80(2): 251-254.
|